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Abstract. In this paper, we propose CryptMed, a system framework that enables medical service providers to offer secure,
lightweight, and accurate medical diagnostic service to their customers via an execution of neural network inference in the
ciphertext domain. CryptMed ensures the privacy of both parties with cryptographic guarantees. Our technical contributions
include: 1) presenting a secret sharing based inference protocol that can well cope with the commonly-used linear and non-linear
NN layers; 2) devising optimized secure comparison function that can efficiently support comparison-based activation functions
in NN architectures; 3) constructing a suite of secure smooth functions built on precise approximation approaches for accurate
medical diagnoses. We evaluate CryptMed on 6 neural network architectures across a wide range of non-linear activation
functions over two benchmark and four real-world medical datasets. We comprehensively compare our system with prior art
in terms of end-to-end service workload and prediction accuracy. Our empirical results demonstrate that CryptMed achieves up
to respectively 413×, 19×, and 43× bandwidth savings for MNIST, CIFAR-10, and medical applications compared with prior
art. For the smooth activation based inference, the best choice of our proposed approximations preserve the precision of original
functions, with less than 1.2% accuracy loss and could enhance the precision due to the newly introduced activation function
family.

Keywords: Secure computation, Privacy-preserving medical service, Neural network inference, Secret sharing

1. Introduction

Recent thriving deep learning techniques have been fueling a wide spectrum of medical endeavors,
ranging from radiotherapy [1], clinical trial and research [2], to medical imaging diagnostics [3]. En-
terprises capitalize on neural networks (NNs) to offer medical diagnostic services, facilitating hospitals
and researchers to produce faster and more accurate decisions over their medical data. With the growth
in such offerings comes rapidly growing awareness of daunting privacy concerns. The medical data is
of sensitive nature and must be always kept confidential [4–7]. Meanwhile, NN models used in these
services are seen as lucrative intellectual properties and encode knowledge of private training data [8].
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Addressing these privacy concerns in the above deep learning powered service scenario generally fits
within paradigm of secure multi-party computation (MPC). A rich body of work [9–13] proposes hand-
tuning MPC protocols for secure inference, whereby the service provider and the customer interact to
produce an inference over encrypted/secret-shared NN model and individual data. We note that prior
designs are still facing obstacles regarding inference efficiency and accuracy in the ciphertext domain,
and do not appear to be able to fulfill practical requirements of real-world medical diagnostic scenarios.

Firstly, they all require customers to conduct heavy cryptographic computations like homomorphic
encryption (HE) and garbled circuits (GC), imposing intensive computational and communication over-
heads during inference. These overheads are further exacerbated when, e.g., the service is deployed to a
hospital with resource-constrained devices (like portable medical imaging scanners [14]).

Secondly, existing protocols are either not compatible with non-linear (activation) functions [9, 11]
or only focus on the simple ReLU function [12, 13, 15], causing limitations of applicability for medi-
cal diagnoses. There are limited works investigating other essential (smooth) activation functions, like
sigmoid. Among them, most of existing designs use high-degree polynomials [16, 17] or ad-hoc piece-
wise polynomials [10, 18–20] to approximate those activation functions. However, the former approach
incurs heavy costs when evaluating repeated multiplications. The latter one relies on intervention and ex-
pertise on models and training datasets for fine-tuning [10], or encounters the severe ‘vanishing gradient
problem’ making the NNs imprecise [18–20].

To address the above challenges, we design, implement, and evaluate CryptMed, a lightweight and
secure NN inference system tailored for medical diagnostic services. CryptMed proceeds by having the
hospital and the medical service engage in a tailored secure inference protocol over their secret-shared
inputs. Only the hospital learns the diagnostic result; and the privacy of the medical data and model is
ensured against each other. In particular, we combine insights from cryptography, digital circuit design,
and deep learning literature, fostering an efficient, low-interaction, and accurate deep learning service
suitable for realistic medical scenarios. Our contributions are summarized as follows.

• We propose a new secure NN inference system framework CryptMed relying only on the lightweight
secret sharing techniques, which requires neither heavy cryptographic computation nor large-size ci-
phertext transmission.
• We present a hybrid protocol design that consists of a preprocessing phase and an online phase where

the preprocessing phase conducts as much computation as possible to ease the online phase. Moreover,
the preprocessing only involves lightweight computation in the secret sharing domain.
• We devise an efficient and communication-optimized secure comparison function harnessing the in-

sights from cryptography and the field of digital circuit design. Our proposed secure comparison
function can efficiently support the widely adopted comparison-based non-linear functions, including
ReLU, ReLU6, Leaky ReLU, Binary activation, and MaxPool/MinPool. Compared to the commonly-
used GC solutions, CryptMed’s secure ReLU is 36× faster and requires 398× less communication,
and the secure MaxPool is 20× faster and uses 192× less communication.
• We devise secure smooth activation functions (i.e., tanh, sigmoid, ELU) from newly proposed precise

and cryptography-friendly approximations in the field of digital circuit design and deep learning lit-
erature. Our introduced approximations are non-linear and low-degree piecewise polynomial approx-
imations with quantitative performance and demonstrate promising accuracy through comprehensive
empirical. They are not only approximations but also new activation function family that are natural
replacements of the smooth functions. With such approximations, CryptMed reformulates the chal-
lenging support for secure smooth activation functions into the comparison-based construction that
can be efficiently and accurately evaluated in secure domain.
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• We conduct formal security analysis. We implement a prototype of CryptMed. We extensively train
varying neural network models based on 6 architectures across a wide range of non-linear activa-
tion functions. We conduct comprehensive experiments over two benchmarking datasets and four
real-world medical datasets. Our experiment results show that CryptMed requires the least network
resources compared to prior works with up to 413×, 19× and 43× bandwidth savings for MNIST,
CIFAR-10, and the medical applications, respectively.

The rest of this paper is organized as follows. Section 2 investigates the related work. Section 3 in-
troduces the necessary preliminaries. After an overview of our system in Section 4, we present our
proposed construction in Section 5. Section 6 presents our empirical evaluation on microbenchmarks
and end-to-end secure inference service. Finally, Section 7 concludes this paper.

2. Related Works

Secure Neural Network Inference. Secure neural network inference has drawn much attention in the
emerging field of privacy-preserving machine learning. Our design is closely related to a line of stud-
ies on secure NN inference. These studies [9–13, 21–23] mostly propose an interactive protocol for
secure inference running between the service provider and the customer. Among others, there are de-
signs [15, 18, 24] that consider an outsourced scenario, where two non-colluding cloud servers collab-
oratively perform NN inference over the encrypted/secret-shared model and data. Apart from different
system models, they commonly rely on heavy cryptographic techniques (like HE and GC) during the
latency-sensitive online inference procedure. Very recently, Delphi [12] proposes a hybrid and inter-
active inference protocol, which preprocesses some cryptographic operations to accelerate the online
inference execution. However, this work still demands intensive workloads on the customer to conduct
heavy cryptographic computations during preprocessing, and relies on expensive GC based approach
to evaluate the basic ReLU function. CryptMed adopts a similar hybrid setting yet only involves the
lightweight secret sharing techniques during the entire secure inference procedure, which has an promi-
nent advantage of rather simplified implementation for easy real-world deployment, compared to the
SOTA which requires heavy optimization in GC and homomorphic encryption implementation.

We emphasize that most prior works only support the basic ReLU activation [12, 13, 15]. Other es-
sential activation functions commonly-used in deep learning based medical diagnoses are unexplored,
such as ReLU6, Leaky ReLU, and the exponential linear unit (ELU) [25]. Even worse, some works can
not fully cope with the non-linearity [9, 11]. Instead, they use the square function for approximation,
resulting in an imprecise prediction [26, 27] that could cause impactful consequences in the medical
diagnostic applications.

In the literature, only limited works explore the smooth sigmoid activation function via polynomial
approximations. These works either resort to high-degree polynomials [16, 17] or ad-hoc piecewise
polynomials [10, 18–20]. The first approach suffers from substantial costs to evaluate a large amount of
secure multiplications. The second approach heavily relies on intervention from developers to fine-tune
the piecewise polynomials (coefficients and segments) [10], or runs into the severe vanishing gradient
problem making the NNs imprecise [18–20]. All those solutions do not appear to be competent for
practical deep learning based medical diagnoses deployment. A detailed comparison between our work
and prior works is summarised in Table 1.
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Table 1
Limitations of prior secure neural network inference systems and comparison with our systems.

No heavy crypto.
for linear layers?

No heavy crypto.
for nonlinear layers?

No large ciphertext
transmissions?

Applicable for
generic NNs?

Support smooth
activations?

CryptoNets [9] 7 7 7 71 7

SecureML [18] 3 7 3 3 37

MiniONN [10] 3 7 3 3 3

Gazelle [11] 7 7 7 71 7

Chameleon [15] 3 7 3 3 7

XONN [28] 7 7 3 372 7

Quotient [29] 7 7 3 372 7

Falcon [30] 7 7 7 3 7

Delphi [12] (SOTA) 37 7 3 3 7

CryptMed (our system) 3 3 3 3 3

1 These systems requires NN model architecture modification, such as polynomial approximation of ReLU activation. This setting
could downgrade the prediction accuracy.
2 These systems are designed for quantized NNs. Quotient [29] uses Ternarized NN, and XONN [28] is designed for Binarized
NN.

Secure Machine Learning MPC Frameworks. A number of generic MPC frameworks are designed
and implemented for complicated computation tasks like machine learning. Noteworthy examples in-
clude the two-party framework with a trusted party to generate correlated randomness proposed in
Chameleon [15], the framework proposed by Reza Sadeghi et al. [31], TAPAS [32], FHE DiNN [33],
the framework proposed by Dalskov et al. [34], MP2ML [35]; the three-party frameworks proposed in
ABY3 [19], SecureNN [36], CryptTFlow [37]; the four-party frameworks in Trident [38], FLASH [39];
and multi-party frameworks in TFEncrypted [40], PySyft [41, 42], FALCON [43]. Note that a handful
of latest privacy-preserving machine learning systems opt for specialized and optimized designs rather
than direct application of generic MPC frameworks [12, 28, 29, 44] for performance consideration. Our
design also follows such trend.
Privacy-Preserving Medical Diagnosis. This work also relates to the designs of privacy-preserving
medical diagnosis. There is a plethora of work proposed on privacy-preserving medical imaging based
diagnostic applications. Some works strive to enhance the reliability of image-centric diagnoses via
privacy-preserving image denoising [45–48]. These works resort to DNNs [45, 46] or reference im-
age patches [47, 48] to devise image denoising protocols that can privately reduce the noises and de-
liver high-quality medical image content. Meanwhile, a line of work aims to explore privacy-preserving
machine learning for various medical diagnostics, like medical image classification [24, 49–52], tu-
mor segmentation [53–56], and genomic data regression [57–59]. Some of them utilize cryptographic
privacy-enhancing techniques (e.g., homomorphic encryption, secure multiparty computation) to protect
the privacy of machine learning models and medical data [24, 49, 50, 57–59]. Others resort to differential
privacy techniques to train a private model that can be used to conduct private inference over medical
images [51–56]. We emphasize that these works focus on different problems and their designs are highly
different from ours. A few of them consider secure neural network inference based medical diagnosis,
yet requiring to use heavy cryptography [24, 50] or not focusing on supporting smooth activation func-
tions [49]. Many others explore different problems, like the relatively simpler regression models [57–59],
or federated learning [51–56]. Besides, those works relying on differential privacy techniques require to
perturb the data with noise, and thus would downgrade the utility of models [51–56].
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Table 2
Table of notation.

Notation Description

X, x Input/feature tensor and element.
W,w Weight tensor and element.
µ, δ, γ, β Batch normalization parameters: the running mean, running variance, scale, and shift.
L Number of neural network layers
ℓ, n Bit length ℓ and vector length n.
i Identifier of a party i, where i ∈ {0, 1}.
b, c Control bits
xℓ The most significant bit of element x
xk, xk The k-th element of vector x; The k-th vector.
⟨x⟩Ai Additive secret shares of value x in ring Z2ℓ held by the party iJxKi Boolean shares of value x in ring Z2 held by the party i
⟨x⟩Ai ± ⟨y⟩Ai Addition/subtraction over additive secret shares
⟨x⟩A · ⟨y⟩A Multiplication over additive secret sharesJxKi + JyKi Bitwise XOR over Boolean sharesJxK · JyK Bitwise AND over Boolean shares

Apart from the machine learning based approaches, works adopt data mining techniques to securely
analyze the medical data for diagnostics. Applications include similarity analysis of human genome
sequences [60–62], genome-wide association studies [63–66], biometric identification [67], pharmacol-
ogy and medicine [68, 69], and medical time-series data analytics[6, 7, 70]. A common paradigm is to
customize secure computation protocols to meet certain requirements for different medical diagnostic
applications.
Differences from the Conference Version. Portions of this paper have been presented in [49]. We have
revised the preliminary work [49] with substantial new contributions and improvements, as summarized
below. Firstly, we have proposed a number of new efficient, lightweight, and accurate secure non-linear
activation functions in Section 5, including the secure comparison-based activation functions ReLU6,
Leaky ReLU, Binary activation, and the secure smooth activation functions tanh, sigmoid, and ELU
with different approximation approaches. Secondly, we have made a full-fledged implementation of
the new realizations of our security design and conducted comprehensive performance evaluation and
comparisons. The overall experiment results have demonstrated the prominent performance advantage of
our new design. Finally, we have refined the previous work significantly to reflect our new contributions
and latest understanding on the topic, as well as improve the clarity.

3. Preliminaries

In this section, we introduce the core primitives and background used in CryptMed. We summarize the
key notations used in this paper in Table 2.
Secret Sharing. We now present the key cryptographic primitive used in our design: additive secret
sharing. Additive secret sharing [71] protects an ℓ-bit value x ∈ Z2ℓ as two secret shares ⟨x⟩0 = r
(mod 2ℓ) and ⟨x⟩1 = x − r (mod 2ℓ) such that ⟨x⟩A0 + ⟨x⟩A1 ≡ x (mod 2ℓ), where Z2ℓ is a ring and
r is a random value from Z2ℓ (r ∈R Z2ℓ). It perfectly hides x as each share is a random value and
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reveals no information of x. Given two parties P0 and P1, each party holds corresponding shares of two
secret values x and y. Additive secret sharing supports efficient local addition and subtraction over shares
⟨z⟩i = ⟨x⟩i ± ⟨y⟩i and scalar multiplication ⟨z⟩i = η · ⟨x⟩i (η is a public value). They are calculated by
each party Pi (i ∈ {0, 1}) locally without interaction. Multiplication over two shares ⟨z⟩ = ⟨x⟩ · ⟨y⟩ is
realized by the secret-shared Beaver’s triple [72], i.e., Pi holds (⟨t1⟩i, ⟨t2⟩i, ⟨t3⟩i) in a way that t3 = t1 · t2.
Such a multiplication operation with Beaver’s triple is a standard secure computation protocol, whereby
Pi obtains the shares ⟨z⟩i of xy at the end. Note that Beaver’s triples are data independent and can be
efficiently generated via one-off computation by a third party [15, 73]. In addition, additive secret shares
can readily support boolean operations over binary values. Given the bit length ℓ = 1 and the ring Z2, a
secret binary value x is shared as JxK0 = r ∈ Z2 and JxK1 = r ⊕ JxK0. The bitwise XOR (⊕) and AND
(∧) over shares are calculated in the same way as the above addition and multiplication, respectively.
Deep Neural Networks. A typical Deep Neural Network (DNN) comprises two types of layers in se-
quence: linear layers and non-linear layers. Linear layers include convolutional layers (CONV), fully-
connected layers (FC), batch normalization (BN) layers, and average pooling layers (AvgPool). The
functionalities of these layers in cleartext can be formulated as a bunch of additions, multiplications, and
flattened operations over kernels (partial model weights for a certain function) and features (user inputs
and intermediate results). Specifically, the underlying functionality of CONV and FC is the vector-wise
dot product VDP(x,w) = Σn

i=1w(i) · x(i) between a kernel vector w ∈ Rn and a feature vector x ∈ Rn

within a sliding window n × n. Given a kernel W ∈ Rcin×cout×n×n, CONV transforms an input feature
X ∈ Rcin×hin×win into an output feature Y ∈ Rcout×hout×wout via

Y(t,m, n) = Σcin
k=1Σ

n
i=1Σ

n
j=1VDP(X(k,m + i− 1, n + j− 1),W(k, t, i, j)),

where t ∈ [cout],m ∈ [hout, n ∈ [wout]]. That is, any data point in Y is produced by applying a sliding
kernel tensor Wcin×n×n over the entire feature tensor X, and performing cross-channel VDP operations
repeatedly. Such a function indicates the FC layer when n = 1. Batch normalization is used to regularize
the model. It is applied after CONV/FC layers and performs z = γ(x − µ)/δ + β over the feature x
on each neuron, where µ, δ, γ, and β are BN parameters: the running mean, the running variance, the
scale, and the shift. Note that the BN parameters are part of the model weights and should be protected
properly.

As summarized in Table 3, non-linear functions in DNNs can broadly be classified into comparison-
based activation functions, smooth activation functions, and pooling layers. Comparison-based activa-
tion functions (ReLU, ReLU6, LeakyReLU, and Binary activation) have been demonstrated with supe-
rior performance in deep learning applications for rapid learning and high prediction accuracy. They are
essential building blocks in neural networks to introduce non-linearity, particularly in image classifica-
tions. These functions alleviate the well-known ‘vanishing gradient problem’ (neural networks could not
converge) encountered when the sigmoid and tanh functions are leveraged for training. The ReLU func-
tion is the most widely adopted activation function in CNNs. The ReLU6 activation function is a variant
of the ReLU that clips weights between 0 and 6. The Leaky ReLU function adopts a linear function for
negative features. The Binary activation function is usually adopted in quantized NNs.

Smooth activation functions make non-trivial usage in deep learning. Similar to comparison-based
activation functions, smooth activation functions introduce non-linearity to NNs. Additionally, these
functions have properties of continuity, smoothness, and monotonicity to empower NNs with complex
capabilities [74, 75]. CryptMed focuses on three widely-adopted smooth activation functions, i.e., sig-
moid, hyperbolic tangent (tanh), and ELU. They are vital building blocks in a variety of machine learn-
ing and deep learning paradigms for medical diagnoses, like medical time series predictions [74], tumor
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Table 3
Typical non-linear layers in DNNs.

Layer Description Function

Comparison-based
activation function

Binary activation function f (x) =

{
1 if x ⩾ 0

0 if x < 0

ReLU activation function f (x) = max(0, x)
ReLU6 activation function f (x) = min(max(0, x), 6)
Leaky ReLU activation function f (x) = max(0.1x, x)

Smooth activation
functions

Sigmoid function f (x) = 1
1+e−x

Hyperbolic tangent (tanh) function f (x) = 2x−e−x

ex+e−x

Exponential linear units (ELU) activation function f (x) =

{
x if x ⩾ 0

α · (ex − 1) if x < 0

Pooling layers
(window size n)

max pooling max(x1, ..., xn)

min pooling min(x1, ..., xn)

segmentation, and medical imaging denoising [46]. The tanh function and the sigmoid function are
preferable over logistic regression, LSTM, and RNN for sequential and time series data prediction. The
ELU function [76] is a noise-robust and precise activation function compared to the conventional ReLU
activation and its variants (e.g., Leaky ReLU, Parametrized ReLU). Besides, ELU effectively diminishes
the ‘vanishing gradient problem’ by setting the identity for positive features.
Secure Computation over Fixed-Point Ring. Deep learning inference operates over real-valued num-
bers, i.e., DNN weights and user inputs. In cleartext, they are represented in floating-point numbers. To
allow CryptMed to operate in the secret sharing domain, we leverage the fixed-point representation to
project values to the underlying ring Z2ℓ . Such fixed-point representation is a common paradigm adapted
in prior work [10, 12, 18, 20]. Specifically, given a floating-point number x, we first convert it to a signed
fixed-point integer x̄ = ⌊x · 2s⌋ with a scaling factor s embedding the fractional part. Afterwards, we
project such an integer to the ring Z2ℓ via x̄ mod 2ℓ. To represent the sign, we leverage the two’s comple-
ment representation, where the most significant bit (MSB) represents the sign. In this way, non-negative
values are mapped to the lower-half ring [0, 2ℓ−1−1], while negative values are mapped to the upper-half
ring [2ℓ−1, 2ℓ − 1]. Then, the MSB will be ‘0’ for a non-negative value, and ‘1’ for a negative value. In
fixed-point representation, repeated multiplications may lead to integer overflow due to the excess of
fractional bits (from s to 2s bits). A common treatment is to use a secure local truncation [12, 18, 20],
where the least s bits are chopped off ahead of subsequent multiplications.

4. System Overview

4.1. Architecture

Figure 1 illustrates the system architecture of CryptMed which enables secure deep learning based
medical diagnostic service. CryptMed operates between two parties: the hospital and the medical service
provider. On the one hand, we consider that the medical service as an enterprise which deploys an
NN powered medical diagnoses service offering though a proprietary NN model. On the other hand,
we consider that the hospital as a customer intends to take advantage of the deep learning service to
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RMIT Classification: Trusted

Medical ServiceHospital

Data
CryptMed

Prediction

Model

Fig. 1. System architecture.

facilitate an accurate medical conclusion, while protecting its own confidential medical records (e.g.,
CT image, physiological data). Note that the role of the hospital in the real world can be any healthcare
institutes, such as clinics, biomedical research centers, or life-science institutes. To launch a secure
medical diagnostic service, the above two parties execute CryptMed’s secure NN inference protocol over
the secret-shared model and secret-shared medical record. At the end, only the hospital can obtain the
secret shares prediction result, which is then recovered to get the cleartext diagnosis. CryptMed provides
a cryptographic guarantee such that the hospital obtains the inference result only and nothing else, while
the medical service learns no information about the hospital’s medical records.

4.2. Threat Model

CryptMed designs two-party inference secure against semi-honest adversaries. In CryptMed, the hos-
pital and the medical service will honestly follow the prescribed protocol, yet trying to deduce auxiliary
information about each other’s private input beyond what revealed from the protocol result. It is noted
that such an assumption is practical. Nowadays the behavior of hospital is widely enforced by ethics,
law and privacy regulations [4, 5]. In the meantime, the medical service is usually offered by well-
established vendors (e.g., Microsoft Project InnerEye [3], Google DeepMind Health [1]), that do not
have strong incentives to risk their business model and publicity for malicious behaviors [70]. Due to
the above facts and observations, such a threat model is commonly adopted in prior secure NN inference
work [10, 12] as well. CryptMed strives to ensure the privacy of the hospital’s medical records and the
NN model (values of trained weights). Consistent with prior art [10, 12, 24], CryptMed does not hide the
data-independent model architecture, e.g., the model size and number of layers. Lastly, CryptMed deems
thwarting adversarial machine learning attacks orthogonal, which attempt to exploit the inference pro-
cedure as a blackbox oracle to extract private information. Mitigation strategies can be differentially
private learning [77].

5. Our Proposed Design

In this section, we introduce CryptMed’s secure NN inference protocol for medical diagnostic appli-
cations. At a high level, our design consists of two types of secure layer evaluations: secure linear layers
and secure non-linear layers. CryptMed efficiently supports a suite of secure linear layers, including the
secure convolutional layers, secure fully-connect layers, secure batch normalization, and secure average
pooling layers. For secure non-linear layers, CryptMed efficiently realizes a series of comparison-based
non-linear layers, i.e., ReLU, ReLU6, Leaky ReLU, Binary activation, MaxPool, and MinPool. Besides,
CryptMed enables rich non-linear functionalities by supporting lightweight and accurate evaluations of
secure smooth activation functions, including tanh, sigmoid, and ELU. All these layers are vital building
blocks in deep learning based medical diagnostic services.
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Hospital Medical Service

Offline

{a0i , a2i }i∈[1,L] {Ai, a1i }i∈[1,L], {W1, ...,WL}
(Wi − Ai)←−−−−−−−−

Let ui = a0i Let vi = a1i
(Wi − Ai) · a0i + a2i = Wiui − vi

Online

Linear layer i = 1
(X1 − u1)−−−−−−−−→

Let ⟨X2⟩0 = W1u1 − v1 ⟨X2⟩1 = W1(X1 − u1) + v1
Linear layer i ⩾ 2

(⟨X̄i⟩0 − ui)−−−−−−−−−→
X̄i − ui = (⟨X̄i⟩0 − ui) + ⟨X̄i⟩1

Let ⟨Xi+1⟩0 = Wiui − vi ⟨Xi+1⟩1 = Wi(X̄i − ui) + vi
Non-linear layer i ⩾ 1

Secure Non-linear Function
←−−−−−−−−−−−−−−−−−−−→

⟨X̄i+1⟩0 ⟨X̄i+1⟩1

Fig. 2. CryptMed’s secure inference protocol.

In CryptMed, each secure layer securely evaluates a certain cleartext functionality in the secret shar-
ing domain, which proceeds by taking the secret-shared inputs (features and/or kernels) and producing
the secret-shared outputs passed to the succeeding secure layer. Our overarching goal is to devise a
lightweight protocol for secure neural network inference with optimized interactions, while empower-
ing rich and accurate secure functionalities for deep learning based medical services. Atop such goal,
we have three prominent design insights.
Supporting lightweight secure linear layers. We first split CryptMed’s protocol into a preprocessing
phase and an online phase, so as to shift as much computation as possible to preprocessing phase.
Inspired by [12], we preprocess the model as secret shares and deliver corresponding shares to the
hospital before medical record becomes available. So, the online phase can directly work over secret
shares without any heavy cryptographic techniques (like HE) or multi-round ciphertext transmissions.
Yet we are aware that the protocol in [12] involves heavy HE during preprocessing to produce and send
the model shares as ciphertexts, which may not be amiable for the resource-limited hospital, like COVID-
19 pandemic screening centers with handheld medical imaging scanners [14]). Instead, our protocol
delicately leverages the insight from Chameleon [15] and enables the preprocessing to be purely based
on lightweight computation in the secret sharing domain. As a result, our entire protocol works only
with small shares, which immediately gains 20× improvement on preprocessing and 10× on overall
communication costs over [12].
Supporting lightweight non-linear layers. For secure evaluation of non-linear layers, prior works ei-
ther resort to the heavy cryptographic techniques (i.e., garbled circuits) [10, 12], or circumvent the non-
linearities with the square function approximations [9, 11]. Unfortunately, such methods may introduce
high communication overheads or induce instabilities of NN when handling complex tasks [26, 27]. In
CryptMed, we make observations from the field of digital circuit design [78] and present a secure compar-
ison function that can efficiently evaluate comparison-based non-linear layers, including ReLU, ReLU6,
Leaky ReLU, and Binary activation functions. At the core, this function is fully based on lightweight
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secret sharing with optimized interactions between the hospital and the medical service. With these
designs, our experiment demonstrates a 413× bandwidth reduction compared with prior works.
Supporting accurate activation functions over secret sharing domain. Most existing works [12, 13,
15] focus only on the simple ReLU function. Other essential activation functions remain under explo-
ration, including Leaky ReLU, ReLU6, and ELU. These activation are fundamental building blocks in
modern NN architectures for medical applications, such as medical image classification [25], image de-
noising [46], and medical times series (physiological data) prediction [74, 79]. The most challenging
task is to accurately and efficiently evaluate the smooth activation functions (e.g., sigmoid, tanh, and
ELU) in secure domain. Such functions involve exponentiation and division operations that are know-
ingly expensive to be computed over secret-shared data.

Prior art tackling such challenges mainly falls into two categories. Works in the first category resort to
function approximations based on polynomials. Some of them use the high-degree polynomials [10, 16,
17], which require heavy computational and communication costs to evaluate repeated multiplications.
Others leverage the ad-hoc piecewise polynomial approximation [10, 18–20]. These works either heavily
rely on intervention and expertise on DNN model and training dataset to fine-tune the coefficients [10] or
encounter severe ‘vanishing gradient problem’ making the NNs quite imprecise [18–20]. The work [80]
in the other category uses GC to evaluate the smooth functions in a blackbox manner, suffering from
prohibitively performance overheads.

Instead of the strawman approximations, CryptMed proposes secure smooth activation functions that
are accurate while keeping the cryptographic costs in mind. The core idea is to make use of advancements
from the field of digital circuit design [46, 81–83] and the machine learning literature [74, 84] so as to
propose more precise and cryptography-friendly approximations. These approximations are non-linear
and low-degree piecewise polynomials that have quantitative performance demonstrating promising ac-
curacy over comprehensive empirical evaluations. With such approximations, CryptMed reformulates
the smooth activation functions into comparison-based constructions, and thus circumvents the obsta-
cles coming from exponentiation and division. As a result, CryptMed empowers accurate and efficient
secure realizations of smooth activation functions over secret sharing domain.

5.1. Secure Linear Layers

The subsequent section presents CryptMed’s secure inference protocol, which is comprised of the
preprocessing phase and the online inference phase as shown in Fig. 2.
Preprocessing phase. During preprocessing, the hospital and the medical service pre-generate custom
secret shares of the NN model in an appropriate form which are to be used during online inference. This
is a one-off computation and conducted independent of the hospital’s medical record. Let L be number of
layers. The hospital takes as input the L sets of randomnesses (in tensor form) {a0i , a2i }, where i ∈ [1, L].
Similarly, the medical service takes as input the tensors of model weights for each layer W1, ...,WL and
randomnesses tensors {Ai, a1i }. Such randomness tensors {a0i , a1i , a2i ,Ai} are independent to any party’s
input and can be pre-distributed to the parties. They satisfy the relationship: a1i = Ai · a0i − a2i . Note that
the dimension of each randomness tensor is in line with the dimension of each layer’s filter. Given these
inputs, the two parties perform the following steps.

(1) For each i ∈ [1, L], the medical service computes Wi − Ai over the weight tensors and sends to the
hospital.

(2) The hospital computes (Wi − Ai) · a0i + a2i = Wia0i − Aia0i + a2i for each layer.
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(3) Let ui denote a0i , and vi denote a1i . The medical service thus holds vi, and the hospital holds Wiui−vi,
i.e., an additively secret-shared weight tensor Wiui.

Online inference phase. During online inference, the hospital takes as input the tensor of a medical
record X1, the randomnesses ui, and weight shares Wiui − vi. The medical service takes as input the
weight tensors W1, ...,WL and the randomnesses vi. They then perform the secure layer function in
pipeline as follows.
The first linear layer i = 1:

1. The hospital computes and sends X1−u1 to the medical service, and uses ⟨X2⟩0 to denote W1u1−v1.
2. The medical service computes ⟨X2⟩1 = W1(X1 − u1) + v1 = W1X1 −W1u1 + v1.
3. At this point, the hospital and the medical service hold the additive secret shares (i.e., ⟨X2⟩0, ⟨X2⟩1)

of features1 outputted from the first linear layer W1X1 .

Remaining linear layers i ⩾ 2:

1. Similar to the first layer, the hospital computes ⟨X̄i⟩0 − ui over its share ⟨X̄i⟩0 of activation produced
from the secure ReLU evaluation (which we will detail later), and sends it to the medical service. Such
a treatment can perfectly hide the hospital’s share, and protect the activation X̄i against the medical
service. It then sets ⟨Xi+1⟩0 = Wiui − vi.

2. The medical service computes Xi−ui = ⟨X̄i⟩0−ui + ⟨X̄i⟩1. Then it gets ⟨Xi+1⟩1 = Wi(Xi−ui)+vi,
ensuring both parties hold additive secret shares (i.e., ⟨Xi+1⟩0, ⟨Xi+1⟩1) of layer result WiXi.

Non-linear layers: The shares form secure linear layer evaluation can be fed into the secure non-linear
layer, which outputs shares ⟨X̄i+1⟩0, ⟨X̄i+1⟩1 of activations to each party.
Output layer: The medical service sends ⟨XL⟩1 to the hospital, who can then integrate ⟨XL⟩0 for recon-
struction of the the final inference result XL.

5.2. Secure Non-linear Layers

CryptMed supports highly efficient evaluation of the secure non-linear layers in the secret sharing
domain. We observed that most of the non-linear activation functions and pooling layers can be de-
composed into a series of comparison operations along with some linear operations (i.e., addition and
multiplication). Besides, as mentioned above, the smooth activation functions will be delicately reformu-
lated to the comparison-based piecewise non-linear polynomials, and thus relying on the comparison as
well. With such an observation in mind, we reformulate each comparison to the MSB extraction defined
as follows. Suppose we have two features x1, x2. The MSB extraction is defined as

b← MSB(x1 − x2) =

{
0 if x1 ⩾ x2
1 if x1 < x2

.

Then, finding the maximum max(x1, x2) (or the minimum min(x1, x2)) is reformulated as

max(x1, x2) = b · (x2 − x1) + x1; min(x1, x2) = b · (x1 − x2) + x2.

1Biases can be added to the medical service’s shares locally.
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Fig. 3. A concrete example of 8-bit parallel prefix adder and the corresponding binary operator.

The sign of a feature x is calculated via sign(x) = 1− 2MSB(x) =

{
1 if x ⩾ 0

−1 if x < 0
.

Note that similar philosophy has also been adopted in the preliminary version of our paper [49], yet
prior solution requires two multiplications for each comparison (i.e., max(x1, x2) = (1 − b) · x1 + b ·
x2), whereas our newly proposed reformulation involves only one multiplication. Such an improvement
is non-trivial, since a typical neural network usually requires a million and even billion scale of the
number of comparison operations. With the above reformulation, the most challenging computation is
how to securely extract the MSB in the secret sharing domain. We resort to a communication-optimized
construction of the secure MSB extraction function. Details are presented in this subsequent section.
Communication-Optimized Secure MSB Extraction. The secure MSB(·) extraction function is used
to securely extract the MSB of an additive-shared data ⟨x⟩ and generate a boolean-shared MSB JxℓK,
where ℓ is the bit length. The key idea is to efficiently extract the MSB in the secret sharing domain.
CryptMed’s proposed design is built upon an practical and communication-optimized construction [49],
which realizes the MSB extraction via carry look-ahead adder logic. By taking advantage of the par-
allel prefix adder [78] (PPA), such a construction can securely produce the MSB in logarithm round
complexity O(log ℓ) in the secret sharing domain.

The construction of the PPA-based MSB extraction is introduced as follows. The staring point is to
view the two shares of an ℓ-bit value x as two inputs of the PPA. To do so, we decompose the secret
shares ⟨x⟩0, ⟨x⟩1 as two bit strings e = {eℓ, ..., e1} and f = { fℓ, ..., f1}, respectively. Afterwards, an ℓ-bit
PPA is used to calculate x = e+ f (mod 2ℓ) via a series of binary additions {ei}+ { fi} and pop out the
carry bits cℓ, . . . , c1. In this way, the MSB can be produced as xℓ = cℓ ⊕ eℓ ⊕ fℓ. We provide a concrete
example of 8-bit PPA in Fig. 3 and introduce the details of an ℓ-bit PPA realization as follows.

1. The first step is to calculate the initial signal tuple (p0i , g0i ): the carry generate signal g0i and the carry
propagate signal p0i in parallel via g0i = ei · fi and p0i = ei + fi.

2. The second step is to produce the rest signal tuples (p1i , g
1
i )...(plog ℓi , glog ℓi ) via a binary operator

⊙. Given (gin1 , pin1), (gin2 , pin2) are the inputted two adjacent signal tuples, and (gout, pout) is the
outputted single tuple. Each binary operator is defined as (gout, pout) = (gin1 , pin1) ⊙ (gin2 , pin2),
where gout = gin2 + gin1 · pin2 and pout = pin2 · pin1 . Such a binary operation is recursively performed
over the input tuples, and the outputted signal tuples is propagated to the next layer’s nodes as inputs,
until reaching the log ℓ layer.

3. The third step is to calculate the carry bits via ci+1 = (ei · fi) + ci · (ei + fi) = ci+1 = gi + ci · pi.
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4. Finally, the most significant carry bit can be generated via cℓ = gℓ−1+(pℓ−1 ·gℓ−2)+ ...+(pℓ−1...p2 ·
g1). The MSB is calculated as xℓ = cℓ ⊕ eℓ ⊕ fℓ.

With the above PPA-based MSB construction in mind, we present details of the secure MSB extraction
function in what follows. On each neuron, it takes as input the arithmetic shared integer feature ⟨x⟩ ∈
Z2ℓ , and produces the boolean shared MSB JxℓK ∈ Z2 as output. The hospital (denoted as P0) and the
medical service (denoted as P1) jointly compute the function JxℓK← MSB(⟨x⟩) as follows:

(1) Decompose ⟨x⟩ into bit strings:

(a) P0 sets e as ⟨x⟩0, and decomposes it to bit string e→ eℓ, ..., e1;
P1 sets f as ⟨x⟩1, and decomposes it to bit string f → fℓ, ..., f1.

(b) For each k ∈ [1, ℓ], P0 sets JekK0 = ek and J fkK0 = 0; P1 sets JekK1 = 0 and J fkK1 = fk.

(2) Compute signal tuples (g, p): Jg0k K = JekK · J fkK, Jp0k K = JekK + J fkK.
(3) Compute PPA:

(a) RoundR = 1:
P0 and P1 set (Jg11K, Jp11K) = (Jg01K, Jp01K) as a dummy node.
For each k ∈ [2, ℓ/2], let in1 = 2k − 2, in2 = 2k − 1. P0 and P1 compute (Jg1k K, Jp1k K) =
(Jg0in1K, Jp0in1K)⊙ (Jg0in2K, Jp0in2K).

(b) RoundR = 2, ..., log ℓ:
For each k ∈ [1, ℓ/2R], let in1 = 2k − 1, in2 = 2k. P0 and P1 compute (JgRk K, JpRk K) =

(JgR−1
in1 K, JpR−1

in1 K)⊙ (JgR−1
in2 K, JpR−1

in2 K).
(4) Compute MSB: P0 and P1 set JcℓK = Jglog ℓ1 K, JxℓK = Jp0ℓ K + JcℓK.

Secure B2A function. Recall that in CryptMed, our proposed secure comparison function is formulated
via the above proposed secure MSB extraction. For example, finding the minimum between two features
x1, x2 is formulated as min(x1, x2)→ MSB(x) · (x1− x2)+ x2. The secure realization of such a formula
requires secure share conversion when securely multiplying MSB(x) with (x1−x2). Namely, the boolean-
shared JMSB(x)K ∈ Z2 needs to be firstly converted into its corresponding additive shares ⟨MSB(x)⟩ ∈
Z2ℓ . Afterwards, the additively-shared MSB can multiply with the additive shares ⟨(x1 − x2)⟩ ∈ Z2ℓ .

CryptMed resorts to the standard secure boolean-to-additive shares conversion construction (i.e.,
B2A) [24, 73]. The aim is to convert any boolean shares JxK ∈ Z2 to its additive shares ⟨x⟩ ∈ Z2ℓ .
Given two parties, the hospital (denoted as P0) and the medical service (denoted as P1), the secure B2A
function is computed as follow:

(1) P0 sets ⟨e⟩0 = JxK0, ⟨ f ⟩0 = 0, and P1 sets ⟨e⟩1 = 0, ⟨ f ⟩1 = JxK1;
(2) P0 and P1 compute ⟨x⟩ = ⟨e⟩+ ⟨ f ⟩ − 2 · ⟨e⟩ · ⟨ f ⟩.

5.3. Secure Comparison Based Activation Functions

CryptMed targets on four popular comparison-based activation functions, i.e., ReLU and its variants
ReLU6 and Leaky ReLU, and the conventional Binary activation function, as summarized in Table 3.
CryptMed manages to convert their cleartext functionalities into the MSB extraction based constructions.
Through careful customizing, we propose efficient and lightweight realizations of secure ReLU function,
secure ReLU6 function, secure LeakyReLU function, and secure Binary function that are purely based
on secret sharing techniques. In what follows, we present the details of their secure constructions.
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5.3.1. Secure ReLU Activation Function
In CryptMed, we reformulate the ReLU activation to a simpler MSB extraction problem that can be

efficiently evaluated in the secret sharing domain. Given the feature x on each neuron outputted from the
preceding linear layer, it is reformulated into an MSB extraction based construction via

ReLU(x) = max(x, 0)
tran f orm−−−−−→ ¬MSB(x) · x =

{
1 · x if x ⩾ 0

0 · x if x < 0
,

Such a reformulated construction comprises of four atomic steps: the secure MSB(x) extraction, the
secure NOT (i.e., ¬ operation), the secure B2A to convert the boolean-shared MSB into additive shares,
and the secure multiplication. All these steps can be efficiently realized by CryptMed’s secure linear and
non-linear functions. Without loss of generality, we demonstrate the secure ReLU function over single
feature element x on each neuron. Given the shares of a single input feature ⟨x⟩, the hospital (denoted as
P0) and the medical service (denoted as P1) jointly compute the secure ReLU function as follows:
(1) P0 and P1 run to get JbK← MSB(⟨x⟩).
(2) Pi computes the NOT operation JcK = JbK + i.
(3) P0 and P1 run to get the additively shared NOT MSB ⟨c⟩ ← B2A(JcK).
(4) P0 and P1 produce the ReLU activation ⟨z⟩ = ⟨c⟩ · ⟨x⟩.

5.3.2. Secure ReLU6 Activation Function
The ReLU6 activation function is a variant of the ReLU that clips the weights between 0 and 6. Given

the feature x on each neuron, the MSB extraction based ReLU6 is converted via

ReLU6(x) = min(max(0, x), 6) =


x if 6 ⩾ x > 0

0 if x ⩽ 0

6 if x > 6.

→ trans f orm(¬MSB(x− 6)︸ ︷︷ ︸
c1

·6) + (MSB(x− 6) · ¬MSB(x)︸ ︷︷ ︸
c2

·x).

Similar to ReLU, such a construction can be efficiently realized in the secret sharing domain via
CryptMed’s secure linear and non-linear functions. Given the additive shares of each neuron’s feature
⟨x⟩, the hospital P0 and the medical service P1 jointly compute the secure ReLU6 function as follows:
(1) P0 and P1 run to get the MSB Jb1K← MSB(⟨x⟩) and Jb2K← MSB(⟨x⟩ − 6).
(2) P0 and P1 compute the control bits Jc1K = Jb2K + i and Jc2K = (Jb1K + i) · Jb2K.
(3) P0 and P1 run to get the additively shared control bits ⟨c1⟩ ← B2A(Jc1K) and ⟨c2⟩ ← B2A(Jc2K).
(4) P0 and P1 produce the ReLU6 activation ⟨z⟩ = 6 · ⟨c1⟩+ ⟨c2⟩ · ⟨x⟩.

5.3.3. Secure Leaky ReLU Function
Given the feature x on each neuron, CryptMed reformulates the Leaky ReLU into the MSB extraction

based construction via

LeakyReLU(x) = max(0.01x, x) =

{
x if x > 0

0.01x if x ⩽ 0

trans f orm−−−−−→ (MSB(x) · (x− 100x) + 100x) · 1/100.
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Similar to other comparison-based activation functions, the reformulated Leaky ReLU can be realized
via CryptMed’s secure functions. Specifically, given the additive shares of each neuron’s feature ⟨x⟩, the
hospital P0 and the medical service P1 jointly compute the secure LeakyReLU function as follows:

(1) P0 and P1 run to get the MSB JbK← MSB(⟨x⟩).
(2) P0 and P1 run to get the additively shared MSB ⟨b⟩ ← B2A(JbK).
(3) P0 and P1 produce the LeakyReLU activation ⟨z⟩ = ⌊(⟨b⟩ · ⟨x⟩ · (−99) + ⟨x⟩ · 100)/100⌋.

5.3.4. Secure Binary Activation Function
Given the feature x on each neuron, CryptMed converts the Binary activation function into an MSB

extraction based construction as follows

Binary(x) =

{
1 if x ⩾ 0

0 if x < 0

trans f orm−−−−−→ ¬MSB(x).

Such a construction can be efficiently realized via CryptMed’s secure linear and non-linear functions.
Given the additive shares of each neuron’s feature ⟨x⟩, the hospital P0 and the medical service P1 jointly
compute the secure Binary function as follows:

(1) P0 and P1 run to get J¬bK← MSB(⟨x⟩) + i.
(2) P0 and P1 run to get the additively shared NOT MSB as the Binary activation ⟨z⟩ ← B2A(J¬bK).
5.4. Secure Smooth Activation Functions

The smooth activation functions make non-trivial usages in deep learning. As shown in Table 3,
CryptMed focuses on three widely-adopted smooth activation functions, i.e., sigmoid, tanh, and ELU.
They are vital building blocks in a variety of machine learning and deep learning paradigms for medical
diagnoses, like medical time series predictions [74] and medical imaging denoising [46].

CryptMed’s secure smooth activation functions are tailored from two precise and cryptography-
friendly approximations: the polynomial piecewise approximations (PLAs) and the SQNL activation
function family. We provide a high-level overview of our insights below.
Piecewise Linear Approximations. Our first insight is to make use of the PLAs from the field of digital
circuit design [46, 81–83]. They are non-linear and low-degree polynomials with quantitative perfor-
mance. With these approximations, we propose the secure tanhPLA function and secure sigmoidPLAN2

function. They are efficient and accurate realizations of the tanh and the sigmoid functions in the secret
sharing domain. We note that prior work [18–20] also makes use of the PLA approximation. However,
during our experiments, we observed that their proposed approximation could induce the severe ‘van-
ishing gradient problem’, which makes the NNs quite imprecise. More details are given later.
Replacements with SQNL-Family. Our second insight is to leverage the SQNL-family [74, 84] from
deep learning literature. Instead of a vanilla approximation, the SQNL-family is a suite of new activa-
tion functions demonstrating promising accuracy over comprehensive empirical evaluations. It utilizes
the universal approximation theorem [85, 86] and introduces a quadratic non-linearity. With such an
observation, CryptMed devises the secure tanhS QNL function, secure sigmoidLogS QNL function, and the
secure ELUS QLU function for the tanh, sigmoid, and ELU activation functions. In this subsequent sec-
tions, we provide the details of their constructions.
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Fig. 4. The tanh function and its approximation.

5.4.1. Secure Tanh Function
As defined in Table 3, the tanh function involves exponentiation and division operations that are pro-

hibitively expensive to be evaluated in secure domain. In CryptMed, we propose the secure tanhPLA

function and the secure tanhS QNL function that demonstrate promising precision as plotted in Fig. 4.
Secure tanhPLA Function. The tanhPLA function is a piecewise polynomial approximation resorting to
the non-linear and low-degree approximation [46, 83]. Such a PLA has quantitative performance, where
the average error and the maximum error are Eave = 0.41% and Emax = 2.2%, respectively. Given the
feature on each neuron x, the cleartext functionality can be reformulated to an MSB extraction based
construction via

tanhPLA(x) =


sign(x) · (−0.2716x2 + |x|+ 0.016) if |x| ⩽ 0.016

sign(x) · (−0.0848x2 + 0.42654|x|+ 0.4519) if 0.016 ⩽ |x| < 2.57

sign(x) if |x| ⩾ 2.57

trans f orm−−−−−→
b1︷ ︸︸ ︷

MSB(100x− 257) ·¬
b3︷ ︸︸ ︷

MSB(125x− 2)︸ ︷︷ ︸
c1

· sign(x)︸ ︷︷ ︸
c

·(−10x2 + 51x + 54)/120 (1)

+ ¬
b2︷ ︸︸ ︷

MSB(100x + 257) ·
b4︷ ︸︸ ︷

MSB(125x + 2)︸ ︷︷ ︸
c2

·sign(x) · (−10x2 − 51x + 54)/120 (2)

+ ¬MSB(125x + 2) ·MSB(125x− 2)︸ ︷︷ ︸
c3

·sign(x) · (−27x2 + 125sign(x) · x + 2)/125 (3)

+ ¬MSB(100x− 257)︸ ︷︷ ︸
c4

·sign(x) + MSB(100x + 257) · sign(x). (4)

Such a reformulated construction can be viewed as five polynomials, and each of them is triggered by a
control bit. Each control bit indicates the certain threshold x located in and is derived from the MSBs of
the comparison results. For example, the first polynomial in Eq. 1 is defined as sign(x) · (−10x2+51x+
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54)/120 and is triggered by the control bit c1. That is to say, when 0.016 ⩽ x < 2.57, then c1 = 1, and
the other control bits are ‘0’s, and thus the tanh activation of x is produced based on above polynomial.
In addition, the control bit c1 stems from the MSBs of two comparison results: the MSB b1 = 1 indicates
x < 2.57 and the MSB b3 = 0 indicates x ⩾ 0.016. Note that the control bit of the last polynomial in
Eq. 4 is the MSB b2.

To this end, we present the secure realization of the secure tanhPLA function based on above reformu-
lation. Given the additive shares of each neuron’s feature ⟨x⟩, the hospital P0 and the medical service P1

jointly compute the secure tanhPLA function as follows:

(1) P0 and P1 run to get the MSB JbK← MSB(⟨x⟩), Jb1K← MSB(100⟨x⟩−257), Jb2K← MSB(100⟨x⟩+
257), Jb3K← MSB(125⟨x⟩ − 2), Jb4K← MSB(125⟨x⟩+ 2).

(2) P0 and P1 compute the control bits Jc1K = Jb1K · (Jb3K + i), Jc2K = Jb4K · (Jb2K + i), Jc3K =Jb3K · (Jb4K + i), and Jc4K = Jb1K + i.
(3) P0 and P1 run to get the additively shared bits ⟨b⟩ ← B2A(JbK), ⟨c1⟩ ← B2A(Jc1K), ⟨c2⟩ ←

B2A(Jc2K), ⟨c3⟩ ← B2A(Jc3K), ⟨c4⟩ ← B2A(Jc4K), and ⟨b2⟩ ← B2A(Jb2K).
(4) P0 and P1 compute the sign bit ⟨c⟩ = 1− 2 · ⟨b⟩.
(5) P0 and P1 compute the Eq. 1 via ⟨z1⟩ = ⟨c1⟩ · ⟨c⟩ · ⌊(−10⟨x⟩ · ⟨x⟩+ 51⟨x⟩+ 54)/120⌋.
(6) P0 and P1 compute the Eq. 2 via ⟨z2⟩ = ⟨c2⟩ · ⟨c⟩ · ⌊(−10⟨x⟩ · ⟨x⟩ − 51⟨x⟩+ 54)/120⌋.
(7) P0 and P1 compute the Eq. 3 via ⟨z3⟩ = ⟨c3⟩ · ⟨c⟩ · ⌊(−27⟨x⟩ · ⟨x⟩+ 125 · ⟨c⟩⟨x⟩+ 2)/125⌋.
(8) P0 and P1 compute the Eq. 4 via ⟨z4⟩ = ⟨c4⟩ · ⟨c⟩+ ⟨b2⟩ · ⟨c⟩.
(9) P0 and P1 produce the tanhPLA activation ⟨z⟩ = ⟨z1⟩+ ⟨z2⟩+ ⟨z3⟩+ ⟨z4⟩.

Secure tanhS QNL Function. The tanhS QNL function uses the SQNL-family [74] demonstrating promising
accuracy over comprehensive empirical evaluations. Given the feature on each neuron x, the cleartext
functionality can be reformulated to an MSB extraction based construction via

tanhS QNL(x) =


1 if x > 2

x− 0.25 · sign(x) · x2 if − 2 ⩽ x < 2

−1 if x < −2
(5)

trans f orm−−−−−→ MSB(x− 2) · ¬MSB(x + 2)︸ ︷︷ ︸
c1

·⌊(4x− sign(x)︸ ︷︷ ︸
c

·x2)/4⌋+ ¬MSB(x− 2)︸ ︷︷ ︸
c2

−MSB(x + 2)

Such a construction consists of three polynomials that are triggered by the control bits c1, c2, and the
MSB(x + 2) indicating the thresholds −2 ⩽ x < 2, x > 2, and x < −2, respectively. Each control bit is
derived from the MSBs of comparing x with the threshold boundaries.

With the above reformulation and the additive shares of each neuron’s feature ⟨x⟩, the hospital P0 and
the medical service P1 jointly compute the secure tanhS QNL function as follows:

(1) P0 and P1 run to get the MSB JbK← MSB(⟨x⟩), Jb1K← MSB(⟨x⟩ − 2), and Jb2K← MSB(⟨x⟩+2).
(2) P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
(3) P0 and P1 run to get the additively shared bits ⟨b⟩ ← B2A(JbK), ⟨c1⟩ ← B2A(Jc1K), ⟨c2⟩ ←

B2A(Jc2K), and ⟨b2⟩ ← B2A(Jb2K).
(4) P0 and P1 compute the sign bit ⟨c⟩ = 1− 2 · ⟨b⟩.
(5) P0 and P1 produce the tanhS QNL activation ⟨z⟩ = ⟨c1⟩ · ⌊(4⟨x⟩ − ⟨c⟩ · ⟨x⟩ · ⟨x⟩)/4⌋+ ⟨c2⟩ − ⟨b2⟩.
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Fig. 5. The sigmoid function and its approximations.

5.4.2. Secure Sigmoid Function
The sigmoid function, as defined in Table 3, comprises the exponentiation and division operations

which are knowingly computational extensive by a secure two-party computation protocol [10, 79, 87].
Prior work [18–20] leverages the first-order PLA to approximate the sigmoid function denoted as

sigmoidCRI(x) =


0 if x < −1/2
x + 1/2 if − 1/2 ⩽ x < 1/2

1 if 1/2 ⩽ x
. Such an approximation seems plausible. However,

in our experiments, we observed that the sigmoidCRI(x) approximation could introduce severe ‘vanishing
gradient problem’ making the NNs hardly converge during training. As a consequence, the prediction
accuracy of the trained NNs is quit undesired, particularly when dealing with complex datasets. Table 4
showcases the vanishing gradient problem of the sigmoidCRI(x) approximation in our experiments.

Instead, CryptMed takes advantage of the insights from the field of digital circuit design [81, 82]
and the machine learning literature [74, 84] to propose more precise approximations, i.e., the second-
order PLA (sigmoidPLAN2) and the SQNL-family replacement (sigmoidLogS QNL). Fig. 5 illustrates the
approximations of sigmoid used in CryptMed and the sigmoidCRI used in prior art. Note that, all these
approximations can be converted to the MSB extraction based functions and can be efficiently evalu-
ated in the secret sharing domain. In this subsequent section, we expatiate on the secure sigmoidPLAN2

function and secure sigmoidLogS QNL function.
Secure sigmoidPLAN2 Function. The sigmoidPLAN2 function is a non-linear and second-order approxi-
mation [81, 82] of the sigmoid function, where the average error and the maximum error are quantified
as Eave = 0.41% and Emax = 2.2%, respectively. Given the feature on each neuron x, the cleartext

Table 4
Vanishing gradient problem of the sigmoidCRI approximation.

sigmoid sigmoidCRI sigmoidPLAN2 sigmoidLogS QNL

Thyroid 81.47% 5.16 ∼ 9.88% 86.55% 85.85%
MNIST 96.44% 11.35% 91.41% 96.75%
CIFAR-10 47.87% 10.03% 47.87% 59.08%
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functionality can be converted to an MSB extraction based construction via

sigmoidPLAN2(x) =

{
¬MSB(x) if |x| ⩾ 4

−sign(x) · 0.03125x2 + 0.25x + 0.5 if 0 ⩽ |x| < 4

trans f orm−−−−−→ MSB(x− 4) · ¬MSB(x + 4)︸ ︷︷ ︸
c1

·⌊(− sign(x)︸ ︷︷ ︸
c

·x2 + 8x + 16)/32⌋+ ¬MSB(x− 4)︸ ︷︷ ︸
c2

. (6)

It comprises two polynomials that are triggered by the control bits c1 and c2 indicating the thresholds
−4 < x < 4, and x ⩾ 4, respectively. Note that here we prune off the threshold x ⩽ −4, since the
polynomial keeps zero (¬MSB(x) · c2 = 0) in such a threshold.

Given above reformulation and the additive shares of each neuron’s feature ⟨x⟩, the hospital P0 and
the medical service P1 jointly compute the secure sigmoidPLAN2 function as follows:

(1) P0 and P1 run to get the MSB JbK← MSB(⟨x⟩), Jb1K← MSB(⟨x⟩ − 4), and Jb2K← MSB(⟨x⟩+4).
(2) P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
(3) P0 and P1 run to get ⟨b⟩ ← B2A(JbK), ⟨c1⟩ ← B2A(Jc1K), and ⟨c2⟩ ← B2A(Jc2K).
(4) P0 and P1 compute the sign bit ⟨c⟩ = 1− 2 · ⟨b⟩.
(5) P0 and P1 produce the sigmoidPLAN2 activation ⟨z⟩ = ⟨c1⟩ · ⌊(8⟨x⟩ − ⟨c⟩ · ⟨x⟩ · ⟨x⟩+16)/32⌋+ ⟨c2⟩.

Secure sigmoidLogS QNL Function. The sigmoidLogS QNL function resorts to a new activation function
LogSQNL from the SQNL-family [74, 84], which is a precise replacement of the sigmoid function.
Given the feature on each neuron x, the cleartext functionality and corresponding MSB extraction based
construction are defined as follows

sigmoidLogS QNL(x) =


1 if x > 2

0.5x− 0.125 · sign(x) · x2 + 0.5 if − 2 ⩽ x < 2

0 if x < −2
trans f orm−−−−−→ MSB(x− 2) · ¬MSB(x + 2)︸ ︷︷ ︸

c1

·⌊(4x− sign(x)︸ ︷︷ ︸
c

·x2 + 4)/8⌋+ ¬MSB(x− 2)︸ ︷︷ ︸
c2

(7)

The MSB extraction based construction consists of two polynomials. They are activated by the control
bits c1 and c2 when x in the thresholds−2 ⩽ x < 2, and x ⩾ 2, respectively. Similar to the sigmoidPLAN2

function, the polynomial in threshold x < −2 is trimmed due to its zero value. Given the additive shares
of each neuron’s feature ⟨x⟩, the hospital P0 and the medical service P1 jointly compute the secure
sigmoidLogS QNL function as follows:

(1) P0 and P1 run to get the MSB JbK← MSB(⟨x⟩), Jb1K← MSB(⟨x⟩ − 2), and Jb2K← MSB(⟨x⟩+2).
(2) P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
(3) P0 and P1 run to get ⟨b⟩ ← B2A(JbK), ⟨c1⟩ ← B2A(Jc1K), and ⟨c2⟩ ← B2A(Jc2K).
(4) P0 and P1 compute the sign bit ⟨c⟩ = 1− 2 · ⟨b⟩.
(5) P0 and P1 produce the sigmoidLogS QNL activation ⟨z⟩ = ⟨c1⟩ · ⌊(4⟨x⟩ − ⟨c⟩ · ⟨x⟩ · ⟨x⟩+ 4)/8⌋+ ⟨c2⟩.
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Fig. 6. The ELU activation function and its approximation.

5.4.3. Secure Exponential Linear Units Function
As Fig. 6 illustrates, CryptMed proposes the ELUS QLU function taking advantages of the SQLU func-

tion from the SQNL-family [74, 84]. It is defined as follows

ELUS QLU(x) =


x if x ⩾ 0

x + 0.25x2 if − 2 ⩽ x ⩽ 0

−1 if x < −2
trans f orm−−−−−→ MSB(x) · ¬MSB(x + 2)︸ ︷︷ ︸

c1

·⌊(4x + x2)/4⌋+ ¬MSB(x)︸ ︷︷ ︸
c2

·x−MSB(x + 2) (8)

Given the additive shares of each neuron’s feature ⟨x⟩, the hospital P0 and the medical service P1 jointly
compute the secure ELUS QLU activation function as follows:
(1) P0 and P1 run to get the MSB Jb1K← MSB(⟨x⟩), Jb2K← MSB(⟨x⟩+ 2).
(2) P0 and P1 compute the control bits Jc1K = Jb1K · (Jb2K + i) and Jc2K = Jb1K + i.
(3) P0 and P1 run to get the additively shared bits ⟨b2⟩ ← B2A(Jb2K), ⟨c1⟩ ← B2A(Jc1K), and ⟨c2⟩ ←

B2A(Jc2K).
(4) P0 and P1 produce the ELUS QLU activation ⟨z⟩ = ⟨c1⟩ · ⌊(4⟨x⟩+ ⟨x⟩ · ⟨x⟩)/4⌋+ ⟨c2⟩ · ⟨x⟩ − ⟨b2⟩.

5.5. Secure Pooling Layers

The MaxPool layer max(x1, · · · , xn) (or MinPool min(x1, · · · , xn)) can be views as the pairwise max-
imum (or minimum) over features within the n-width pooling window. They can be realized based on
the secure MSB(·) extraction as follows:

b← MSB(x1 − x2); //b = 0, x1 ⩾ x2; b = 1, x1 < x2

z = max(x1, x2) = b · (x2 − x1) + x1; z = min(x1, x2) = b · (x1 − x2) + x2.

Based on above equations, given the secret shares of features ⟨x1⟩, ..., ⟨xn⟩, the hospital P0 and the
medical service P1 perform the secure MaxPool (or MinPool) function as follows:
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(1) For k ∈ [1, n− 1]:
(2) P0 and P1 run to get JbK← MSB(⟨xk⟩ − ⟨xk+1⟩).
(3) P0 and P1 run to get additively shared MSB ⟨b⟩ ← B2A(JbK).
(4) P0 and P1 compute the maximum value ⟨zk⟩ = ⟨b⟩ · (⟨xk+1⟩ − ⟨xk⟩) + ⟨xk⟩; or the minimum value
⟨zk⟩ = ⟨b⟩ · (⟨xk⟩ − ⟨xk+1⟩) + ⟨xk+1⟩. Pi sets ⟨xk+1⟩ := ⟨zk⟩.

(5) Finally, Pi outputs the shares ⟨zn⟩i as MaxPool (or MinPool) result.

The average pooling layer ⌊(x1+, ...,+xn)/n⌋ can be directly computed over additive secret shares via
secure addition, where n is a cleartext hyper-parameter.

5.6. Security Analysis

In this section, we present a comprehensive security analysis of CryptMed’s secure inference proto-
col in the semi-honest adversary model. CryptMed’s core secure inference protocol is devised based on
standard additive secret sharing techniques [71, 88], where all the input data (i.e., medical data, neural
network model) are perfectly protected as additive secret shares that are uniformly distributed in ring Z2ℓ .
Besides, during CryptMed’s protocol execution, any message transcriptions are supported by standard
Beaver’s multiplication/AND procedure [72] as uniformly distributed secret shares. CryptMed provides
stringent cryptographic guarantees throughout the service procedure, where only the prescribed infer-
ence result can be learned by the hospital. Nothing else about each party’s private input can be deduced
from the counterparty beyond what is revealed from the inference result. In what follows, we formally
define the ideal functionality FCryptMed , security definition, and the security proof of CryptMed’s secure
NN inference protocol under the ideal/real world paradigm.

Definition 1. The ideal functionality FCryptMed of CryptMed’s secure deep neural network inference con-
sists of the following parts:

- Input. The medical service submits the DNN modelW and the hospital submits the medical record X
to FCryptMed.

- Computation. Upon receivingW and X,FCryptMed conducts DNN inference and produces the inference
resultW(X).

- Output.FCryptMed outputsW(X) only to the hospital, and returns no information to the medical service.

Given the ideal functionality, we formally define the security definition.

Definition 2. A protocol Π securely realizes the FCryptMed if it provides the following guarantees in the
presence of a probabilistic polynomial time (PPT) semi-honest adversary with static corruption:

- Corrupted hospital. A corrupted semi-honest hospital H should learn no information about the medi-
cal service’s DNN model weights except the hyper-parameters of model architecture. Formally, there
should exit a PPT simulator SimH that can simulate the view ViewΠ

H of the corrupted hospital in real-
world protocol execution: ViewΠ

H
c
≈ SimH(X,W(X)).

- Corrupted medical service. A corrupted semi-honest medical service S should learn no information
about the medical record X submitted by the hospital. Formally, there should exist a PPT simula-
tor SimS that can simulate the view ViewΠ

S of the corrupted medical service in real-world protocol
execution: ViewΠ

S
c
≈ SimS(W).
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Theorem 1. CryptMed’s secure deep neural network inference protocol securely emulates the ideal
functionality FCryptMed under the Security Definition 2.

Proof. We present a simulator for the corrupted medical service or the corrupted hospital, in a way that
the distribution of real-world protocol execution is computationally indistinguishable to the simulated
distribution under our security definition.

- Simulator for the corrupted hospital: Define the simulator of Beaver’s multiplication procedure is
SimBM. The emulated view is indistinguishable from the real-world view of the corrupted hospital H in
the multiplication procedure.

i) In the preprocessing phase of Π, the simulator of the corrupted hospital SimH generates the ran-

domness r $←− Z2ℓ to emulate the messageW − a1 in real-world protocol execution. Both mes-
sages are uniformly distributed in ring Z2ℓ . Given the security of additive secret sharing, H cannot
distinguish the simulated message with the message received from real-world protocol execution.
H computes ⟨X̃2⟩0 = a0 · r + a2 and u = a0.

ii) In the online phase of Π, H inputs the secret shares of medical record X − u or the activation
⟨X̄i⟩0 − u for secure linear layers and receives no messages for the linear layers. SimH works in a
dummy way by directly outputting inputs of H. Thus, the output of SimH is identically distributed

to the view ViewΠ
H . For the non-linear layers, SimH generates ⟨X̃i+1⟩1

$←− Z2ℓ and runs SimBM

to compute secure multiplication over ⟨X̃i+1⟩1 and ⟨Xi+1⟩0 whenever interactions are required.
SimH outputs the simulated shares of activation returned from the secure non-linear layer. SimH

conducts the above computations for every layer. At the end, SimH outputs the simulated shares
of the last layer’s result ⟨X̃L⟩0, ⟨X̃L⟩1. The reconstructed value of these two shares is uniformly
distributed in ring Z2ℓ , same as the result from the real-world protocol execution. Therefore, the
output of SimH(X,W(X)) is computationally indistinguishable to ViewΠ

H the view of the corrupted
hospital .

- Simulator for the corrupted medical service:

i) In the preprocessing phase of Π, the corrupted medical service S only inputs the secret shares of
modelW −A1 and receives no message. SimS works in a dummy way by directly outputting the
inputs of S v = a1. In this way, the output of SimS is identically distributed to the view ViewΠ

S .

ii) In the online phase of Π, SimS generates and outputs the randomness r $←− Z2ℓ to emulate the
message X − u (or X̄ − u) in the real-world protocol execution. Given the security of additive
secret sharing, S cannot distinguish the emulated message with the one received from real pro-

tocol. For the non-linear layers, SimS generates ⟨X̃i+1⟩0
$←− Z2ℓ . Whenever interactions happen

in the secure activation function, SimS runs SimBM to perform the Beaver’s secure multiplication
procedure over ⟨X̃i+1⟩0 and ⟨Xi+1⟩1 received from the corrupted medical service S. SimS outputs
the simulated shares of activation outputted from the secure activation function. SimS conducts
the above computations for every layer. Because all simulated intermediate messages are uni-
formly distributed in Z2ℓ , and given the security of additive secret sharing and Beaver’s secure
multiplication procedure, the output of SimS(W) is computationally indistinguishable to ViewΠ

S
the view of the corrupted medical service.

□
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Table 5
Performance of secure layer functions.

Secure layer Conv. FC BN ReLU MaxPool AvgPool
3×3 5×5 16× 16 2×2 2×2

Time (ms) 1.25 2.16 8.44 1.74 22.7 31.2 0.05
Comm. (Bytes) 36 100 943 4 78 234 0
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Fig. 7. Unit time of the secure activation functions.
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Fig. 8. Computational overhead of the secure activation functions.

6. Performance Evaluation

We implement a proof-of-concept prototype of CryptMed in Java. We deploy our prototype to Aus-
tralian MASSIVE M3 using m3i computation nodes. Each computation node has 2.7GHz Intel Xeon
Gold 6150 CPU and 384GB RAM, running CentOS Linux 7 system. In our experiment, we choose
to protect the data as additive secret shares in 32-bit ring Z2ℓ . In line with prior secure inference sys-
tems [9, 10, 28], we deploy the computation nodes representing the medical service and the hospital
in a dedicated network. For cleartext neural networks implementation and training, we use the Pytorch
backend and train our models on a NVIDIA Tesla V100 GPU.

We evaluate CryptMed’s performance in terms of performance and accuracy. To evaluate the perfor-
mance, we train 78 neural network models based on six architectures (see appendix Sec. A) across
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Fig. 9. Communication overhead of the secure activation functions.
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Fig. 10. Performance comparison of the secure ReLU and MaxPool layers with GC baseline.
13 different activation functions. These activation functions include the secure comparison-based ac-
tivations (ReLU, ReLU6, Leaky ReLU, Binary activation), the original smooth activations (tanh, sig-
moid, ELU) and the secure smooth activations based on different approximation approaches (tanhPLA,
tanhS QNL, sigmoidCRI , sigmoidPLAN2, sigmoidLogS QNL, and ELUS QLU). They are trained over MNIST,
CIFAR-10, Breast Cancer, Diabetes, Liver Disease, and Thyroid. The goal of our evaluation is to answer
two questions:
1) Whether CryptMed’s secure inference protocol lightweight?
2) Is CryptMed practical and accurate for secure medical diagnostic service?
To answer above questions, we evaluate microbenchmarks of CryptMed’s secure layer functions and a
series of end-to-end system-level inference performance.

6.1. Microbenchmarks

Secure Layer Functions. Table 5 summarizes the performance of commonly-used secure layer func-
tions, including a series of secure linear layers (CONV, FC, BN, AvgPool) and the secure non-linear
layers ReLU and MaxPool. For demonstration purpose, we set the parameters of the sliding windows
as 3 × 3 and 5 × 5 for the CONV kernels, the pooling window as 2 × 2 for the AvgPool and MaxPool,
and the 16 × 16 vectors for FC. As reported, all secure layers in CryptMed are lightweight and can be
efficiently evaluated within 35ms consuming at most 1KB bandwidth.

For secure non-linear activation functions, we first investigate their performance in terms of exe-
cution time and network consumption, including secure comparison-based activations ReLU, ReLU6,
LeakyReLU, Binary, and secure smooth activations tanhPLA, tanhS QNL, sigmoidPLAN2, sigmoidLogS QNL,
ELUS QLU . Fig. 8 and Fig. 9 illustrate the computational and communication overheads of secure
comparison-based activations (in respective left figures) and secure smooth activations (in respective
right figures). As shown, all secure smooth activations require around 10× more resources than se-
cure comparison-based activations. Nevertheless, CryptMed’s secure non-linear activation functions can
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Table 6
Prediction workload of NNs over different secure comparison-based activation functions.

Dataset overhead Binary ReLU ReLU6 LeakyReLU

Breast Cancer time (s) 0.28 0.22 0.35 0.28
comm. (KB) 8.14 8.64 10.56 8.64

Diabetes time (s) 0.24 0.39 0.33 0.24
comm. (KB) 40.34 40.97 43.37 40.97

Liver Disease time (s) 0.19 0.19 0.34 0.19
comm. (KB) 8.22 9.22 13.07 9.22

Thyroid time (s) 0.88 0.94 1.34 0.89
comm. (KB) 110.46 113.59 125.60 113.59

MNIST time (s) 0.82 0.64 1.41 0.84
comm. (MB) 0.91 0.91 0.93 0.91

CIFAR-10 time (s) 423.58 146.9 820.07 436.05
comm. (MB) 496.18 498.83 508.98 498.83

be accomplished within 10ms for a single execution, as plotted in Fig. 7 by grabbing 104 unit execu-
tions. In particular, for the secure smooth functions, the SQNL-family based approximations (tanhS QNL,
sigmoidLogS QNL, ELUS QLU) are relatively lightweight than the PLA based approximations (tanhPLA and
sigmoidPLAN2). In combination with their superior prediction accuracy, as shown later in Table 10, the
SQNL-family based secure smooth activations would be more desirable in practical medical diagnostic
applications.
Secure Non-linear Layers Comparison with GC. We compare CryptMed’s secure realizations of the
secure ReLU and MaxPool with the common GC-based solutions, since prior works target only on
these two non-linear layers. The GC baseline is implemented with FlexSC [89], a Java based two-party
GC framework in the semi-honest setting. In our implementation, we adopt the free-XOR and half-
AND optimizations for GC. All GC-based realizations are implemented with equivalent functionalities
to ours. As Fig. 10 depicts, CryptMed’s realizations are 36×, 20× faster then the GC baseline for secure
ReLU and MaxPool, respectively. For bandwidth consumption, CryptMed’s secure ReLU and MaxPool
achieve respective 394×, 192× bandwidth savings compared with the GC baseline. Such improvements
demonstrate that CryptMed’s secret sharing based design is indeed lightweight and much more efficient
than the prior works relying on GC [10, 12, 15, 28].

6.2. CryptMed’s Protocol Performance

Prediction Workload. Table 6 and Table 7 summarize the end-to-end prediction workload of
CryptMed’s system with 9 different activation functions over real-world medical applications and the
commonly-used machine learning benchmarks. In summary, CryptMed’s secure NN inference system
is lightweight and low-latency over all medical datasets. By using the secure comparison-based ac-
tivations, CryptMed can produce deep learning based medical conclusions within 1s consuming less
than 130KB bandwidth for all evaluated medical datasets. For more complex secure smooth activations,
CryptMed requires less than 31s and 200KB to produce a deep learning based medical conclusion. For
the ML benchmarks, CryptMed evaluates MNIST within 4s and 1MB network resources. For the CIFAR-
10 dataset on a complicated 10 layers NN, CryptMed produces an inference within 14min, 509MB using
secure comparison-based activations, and 38min, 558MB using secure smooth activations. Furthermore,
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Table 7
Prediction workload of NNs over different secure smooth activation functions.

Dataset overhead sigmoidPLAN2 sigmoidLogS QNL tanhPLA tanhS QNL ELUS QLU

Breast Cancer time (s) 0.45 0.45 0.63 0.38 0.45
comm. (KB) 13.48 13.48 19.83 12.06 13.48

Diabetes time (s) 0.45 0.45 0.67 0.37 0.45
comm. (KB) 47.02 47.02 54.95 45.24 47.02

Liver Disease time (s) 0.53 0.53 0.89 0.40 0.53
comm. (KB) 18.91 18.91 31.60 16.07 18.91

Thyroid time (s) 19.37 19.54 30.56 15.39 19.54
comm. (KB) 143.86 143.86 183.51 134.97 143.86

MNIST time (s) 2.17 2.20 3.61 1.66 2.19
comm. (MB) 0.95 0.95 1.00 0.94 0.95

CIFAR-10 time (s) 1336.20 1350.77 2304.31 991.88 1350.39
comm. (MB) 524.41 524.41 557.91 516.90 524.41

Table 8
Preprocessing overhead of secure NNs.

Overhead Breast Cancer Diabetes Liver Disease Thyroid MNIST CIFAR-10

Time (s) 0.1 0.03 0.06 0.28 0.07 243
Comm. (MB) 0.003 0.0022 0.018 0.048 0.45 246.4

we report the performance of secure preprocessing overhead in Table 8. Note that, the costs of prepro-
cecessing are only related to the NN sizes, i.e., the amount of weights in linear layers (non-linear layers
do not produce any weights).
Prediction Accuracy. Table 9 and Table 10 demonstrate the prediction accuracy of our system over
different activation functions. We note that, for the original smooth activation functions sigmoid, tanh,
ELU, and the sigmoidCRI used in prior work [18, 20], we evaluate their accuracy in cleartext domain.
For each family of the smooth functions, we highlight the most precise functions and underline the one
facing with gradient vanishing problem. As shown, our proposed approximations do not introduce many
losses to prediction accuracy. In particular, some of them from the SQNL-family can even enhance the
accuracy. Consider both the evaluation costs and the accuracy, the secure smooth functions based on the
SQNL-family would be better suitable for deep learning based medical diagnostic services.
Comparison with Prior Art. Table 11 compares CryptMed’s end-to-end inference performance with
notable prior secure NN inference works. As shown, CryptMed requires the least network resources
among all other prior works with up to 413× bandwidth saving for MNIST and up to 19× bandwidth
saving for CIFAR-10. For the medical applications, CryptMed improves up to 43× communication over
XONN, the notable work investigating medical scenario with samller quantized NNs and network trim-
ming optimization.

For the state-of-the-art work Delphi [12], their all ReLU version consumes total 5100MB, whereas
CryptMed only requires 498MB, with a 10× enhancement2. Such significant improvement stems from

2Preprocessing: 243MB in CryptMed and 4915MB in Delphi.
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Table 9
Prediction accuracy of different comparison-based activation functions.

Dataset Binary ReLU ReLU6 LeakyReLU

Breast Cancer 88.81% 93.0% 93.7% 91.61%
Diabetes 68.75% 71.87% 73.43% 73.43%

Liver Disease 71.72% 72.0% 66.89% 71.03%
Thyroid 48.77% 86.31% 86.20% 86.11%

MNIST 75.78% 97% 96.97% 97.57%
CIFAR-10 13.2% 81% 80% 82.68%

Table 10
Prediction accuracy of different approximated smooth activation functions.

Dataset sigmoid family tanh family ELU family
sigmoid sigmoidCRI sigmoidPLAN2 sigmoidLogS QNL tanh tanhPLA tanhS QNL ELU ELUS QLU

Breast Cancer 92.3% 86.01% 93.01% 95.8% 92.3% 72.02% 93.01% 95.1% 95.8%
Diabetes 68.75% 67.7% 74.47% 72.39% 70.31% 69.79% 70.31% 72.91% 71.87%

Liver Disease 71.72% 65.51% 71.72% 71.03% 69.65% 71.03% 69.65% 70.34% 69.65%
Thyroid 81.47% 5.16 ∼ 9.88% 86.55% 85.85% 85.56% 64.2% 85.88% 85.5% 85.88%

MNIST 96.44% 11.35% 91.41% 96.75% 96.03% 38.62% 96.93% 97.58% 97.67%
CIFAR-10 47.87% 10.03% 47.87% 59.08% 76.0% 19.71% 74.19% 81.27% 83.87%

Table 11
Bandwidth (MB) comparison of CryptMed with prior art.

MNIST CIFAR-10 Breast Cancer Diabetes Liver Disease

MiniONN 15.8 MiniONN 9272 XONN 0.35 XONN 0.16 XONN 0.3
CryptoNets 372.2 FALCON 1278

XONN 4.29 XONN 2599
Chameleon 10.5 Chameleon 2650

Gazelle (ReLU) ∼5000
Delphi (ReLU) ∼5100

CryptMed 0.9 CryptMed 498 CryptMed 0.008 CryptMed 0.04 CryptMed 0.009

the fact that CryptMed only involves lightweight secret sharing based secure computation through out
the whole service procedure. In comparison, Delphi relies on the usages of heavy cryptography, i.e.,
homomorphic encryption for secure preprocessing and garbled circuits for secure non-linear layers.
Regarding the overall runtime, we emphasize that it is not a fair comparison to directly compare the
experiment results reported in [12]. The reason is that Delphi is implemented in a different programming
language (Rust) with significant optimizations and acceleration from GPU computing. Our evaluation
results are not based on such optimizations.

We note that secure evaluation of non-linear layers is the performance bottleneck in secure neural
network inference [12]. To support the non-linearity introduced by the original ReLU, Delphi adopts a
GC-based realization. For a fair comparison, we have reported in above Fig. 10 the performance of our
design and the GC-based realization. The results have validated a significant performance boost of our
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design over the GC-based realization (36× in runtime and 398× in communication). Even with a direct
(unfair) comparison, CryptMed’s overall inference time, with much simplified implementations, is still
comparable to Delphi’s reported runtime (147s in CryptMed against 140s in Delphi) which is driven by
aforementioned significantly optimized and sophisticated implementations.

7. Conclusion
In this paper, we present CryptMed, a new secure and lightweight NN inference system towards se-

cure intelligent medical diagnostic services. Our protocol fully resorts to the lightweight additive secret
sharing techniques, free of heavy cryptographic operations as seen in prior art. The commonly-used non-
linear comparison-based and smooth activation functions are well supported in a secure, efficient, and
accurate manner. With CryptMed, the privacy of the medical record of the hospital and the NN model of
the medical service is provably ensured with practical performance.
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Appendix A. More Details of Model Architecture

In this section, we present the detailed model architectures used in our paper.

Table 12
Model architecture of MNIST.

Layers Padding Stride
FC (input: 784, output: 128)+ ReLU - -
FC (input: 128, output: 128)+ ReLU - -
FC (input: 128, output: 10) - -

https://github.com/wangxiao1254/FlexSC
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Table 13
Model architecture of CIFAR-10.

Layers Padding Stride
CONV (input: 3× 32× 32, kernel: 3× 64× 3× 3 feature: 64× 32× 32) + ReLU 0 1
CONV (input: 64× 32× 32, kernel: 64× 64× 3× 3 feature: 64× 32× 32) + ReLU 0 1
AP (input: 64× 32× 32, window: 64× 2× 2 output: 64× 16× 16) - 2
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
AP (input: 64× 16× 16, window: 64× 2× 2 output: 64× 8× 8) - 2
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 16× 64× 3× 3 feature: 16× 8× 8) + ReLU 0 1
FC (input: 1024, output: 10) - -

Table 14
Model architecture of Breast Cancer.

Layers Padding Stride
FC (input: 30, output: 16) + BN + ReLU - -
FC (input: 16, output: 16) + BN + ReLU - -
FC (input: 16, output: 2) + BN - -

Table 15
Model architecture of Diabetes.

Layers Padding Stride
FC (input: 8, output: 20) + ReLU - -
FC (input: 20, output: 20) + ReLU - -
FC (input: 20, output: 2) - -

Table 16
Model architecture of Liver Disease.

Layers Padding Stride
FC (input: 10, output: 32) + ReLU - -
FC (input: 32, output: 32) + ReLU - -
FC (input: 32, output: 2) - -

Table 17
Model architecture of Thyroid.

Layers Padding Stride
FC (input: 21, output: 100) + BN + ReLU - -
FC (input: 100, output: 100) + BN + ReLU - -
FC (input: 100, output: 3) + BN - -
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