
Privacy-Preserving Collaborative Medical Time
Series Analysis based on Dynamic Time Warping

Xiaoning Liu and Xun Yi

RMIT University, Australia {maggie.liu, xun.yi}@rmit.edu.au

Abstract. Evaluating medical time series (e.g., physiological sequences)
under dynamic time warping (DTW) derives insights assisting biomedi-
cal research and clinical decision making. Due to the natural distribution
of medical data, a collaboration among multiple healthcare institutes
is required to carry out a reliable and quality medical judgment. Yet
sharing medical data cross the boundaries of multiple institutions faces
widespread privacy threats, along with increasingly stringent laws and
privacy regulations nowadays. Addressing such demands, we propose a
privacy-preserving system tailored for the DTW-based analysis over the
decentralized medical time series sequences. Our system constructs a se-
cure and scalable architecture to deliver comprehensive results from a
joint data analytic task with privacy preservation. To accelerate com-
plicated DTW query processing, our system adapts the advancement in
secure multi-party computation (MPC) framework to realize encrypted
DTW computation, decomposing complicated and iterative operations
into atomic functions under suitable MPC primitives and optimized for
DTW. Moreover, our system introduces a secure hybrid pruning strategy
that diminishes the volume of time series sequences that are submitted
before and processed within the encrypted DTW query. We implement a
prototype and evaluate its performance on Amazon Cloud. The empirical
evaluation demonstrates the feasibility of our system in practice.

1 Introduction

Medical time series analysis produces comprehensive knowledge for modern med-
ical research, driven by the ubiquity of medical data continuously captured by
electrical sensors over time. A typical use case comes for a joint disease screening
for public health, where researchers, hospitals, and healthcare institutes wish to
collaboratively find patients who display similar medical characteristics to the
sample of interest. To derive a reliable and quality conclusion, such an analytic
task often requires specific matching algorithms over time series. As a well-known
distance metric, dynamic time warping (DTW) is ascendant in answering medical
time series mining, such as detecting Premature Ventricular Contraction (PVC)
with Electrocardiography (ECG) data [29], and Cardiac Tamponade with Pho-
toplethysmogram (PPG) data [10]. It is effective to handle time shifting that two
time series with similar shapes will be matched even they are not synchronized
in the time axis.

2 Liu, X. & Yi, X.

Advancement in the DTW-based medical analysis system makes it plausible.
However, a consensus in practice has emerged that the adoption of the above sys-
tem will be heavily stumbled due to the privacy issues. Unauthorized exposure of
the confidential patient records inflicts severe commercial damages and putting
the individuals’ privacy in danger [8, 12, 25]. Atop protecting data confidential-
ity, underpinning medical analysis to be practical requires the collaboration of
multiple institutions. For most medical practices, the data volume and diversity
accumulated in a single hospital cannot provide sufficient disease information
due to the intrinsic distribution of medical data [12,37]. This is challenging since
privacy regulations and laws (e.g., HIPAA in USA [3] and GDPR in Europe [21])
prevent sensitive medical data from ever being shared or pooled together.

One promising approach to deal with joint medical research is leveraging the
secure multi-party computation (MPC) techniques [12, 19, 33]. While the latest
studies [20, 27] display the ability of MPC to handle large-scale data, how to
adapt it to private time series evaluation is unclear. Meanwhile, applying MPC
techniques to DTW faces with cumbersome computational overhead. DTW, as a
dynamic programming algorithm, the rationale behind is to compute the all-pair
underlying distance between elemental vectors of time series. Afterwards, it iter-
atively finds the minimum cumulative distance of a slightly larger portion of time
series until reaching the entire time series. Plenty of iterations of vectorized oper-
ations introduce heavy computational costs, which may result in long processing
time. As seen, the plaintext algorithm of DTW between only two time series
already involves a bunch of complicated operations that are quadratic to the
sequence length. Therefore, how to efficiently compute DTW in the encrypted
domain, and how to build a secure architecture to facilitate healthcare institutes
to jointly and scalably perform encrypted DTW over decentralized medical time
series become particularly challenging.

Contributions: In this paper, we propose a system tailored for privacy-preserving
collaborative medical time series data analysis based on dynamic time warping.
Our system suffices for capturing the above demands: embracing the large vol-
ume medical time series sequences that are naturally decentralized, conducting
secure DTW queries with practical performance, and delivering quality analytic
results benefited from joint mining. The contributions of our proposed system
are summarized as follows:

– We construct an architecture allowing multiple healthcare institutes to carry
out a joint analytic task over encrypted medical time series sequences sup-
plied by geographically separated parties. This architecture is amiable for
a real-world medical analysis scenario. It provides a scalable and dedicated
computation service to serve for multiple participants, and releases each
party from heavy computation and communication workload.

– We devise a mixed protocol which modularly composes a bunch of cus-
tomized atomic functions under MPC primitives. Each function in the pro-
tocol is carefully devised for the DTW algorithm. This synergy enriches the
expressive power of our medical system while providing guaranteed security
for the sensitive data sequences.

Title Suppressed Due to Excessive Length 3

– Our system elaborates a hybrid pruning strategy to accelerate the secure
DTW-query processing on two aspects. Globally, it employs a two-phase
scheme to diminish the volume of sequences that will be submitted to the
secure protocol. In the first phase, the query is compared only with cluster
centers which are precomputed on local, so as to find out candidate clusters
whose records are similar to the query. Afterward, in the second phase, the
secure DTW query is conducted only within the resulting clusters of the first
phase. From the aspect of distance algorithm, resorting to a highly parallel
lower bounding technique, our system prunes off the sequences that are not
possible to be the best match before submitting to heavyweight secure DTW
computation.

– We implement a Java prototype of our system from FlexSC [34], and provide
empirical evidence to confirm the practicality of our system using realistic
public physiological sequences (ECG data) [1]. We conduct a comprehensive
set of evaluations on each component and each phase of our protocol in terms
of time and communication costs. Theoretically, each call of comparing two
data sequences under the DTW distance function requires 1920 calculations
of underlying distance and comparisons to find the minimum distance. Our
results show that it takes about 2 × 104 s to process a secure DTW query
over 15,000 sequences (each contains 128 vectors), achieving a 100× saving
compared with naive sequential scan.

The rest of the paper is organized as follows. Section 2 discusses related
literature. Section 3 introduces the preliminaries used in this paper. Section 4
presents our architecture, and detailed system and protocol designs. We give
implementation and evaluation in Section 5, and conclude the paper in Section 6.

2 Related Works

We organize this section as prior arts of privacy-preserving medical data analysis,
MPC frameworks and applications, and works of DTW in database domain.
Privacy-Preserving Analysis over Medical Data: Privacy-preserving anal-
ysis over human genome sequences is a long-studied problem in secure medical
data mining domain, such as evaluating similarity via private set intersection [7]
and distance calculation [31], and obtaining statistics via secure genome-wide
association studies [19,32]. Recent design [33] proposed by Wang et al. embraces
million-scale genomic data evaluated under private Edit Distance (ED). Their
design preprocesses the data into sets and compares the plaintext values with
a public reference genome to find the variances. Then by leveraging the certain
pattern of human genome sequences, it approximates the ED computation as
set different size protocols. Their secure computation is performed over the vari-
ances sets, thus achieving high scalability. Zheng et al. enable a private medical
image (Chest X-ray images) denoising framework based on Deep Neural Net-
work [38]. Their framework securely delivers high-quality content assuring the
reliability of image-centric applications, such as cloud side diagnosing. Privacy-
aware evaluation over physiological data brings new insights to the secure med-
ical data mining, such as ECG data classification via branching program and

4 Liu, X. & Yi, X.

neural network [8]. Recently, Zhu et al. propose two privacy-preserving protocols
to evaluate Paillier-encrypted time series data under DTW and Discrete Frechet
Distance (DFD), respectively, in the client-server setting [40]. Their protocols
introduce considerable amount of crypto-operations and several rounds of data
transfer. Thus, the design is not suitable for the real-world collaborative min-
ing scenario, where multiple parties are involved and the communication cost
dominates the overall efficiency. This limitation enlightens us to devise a more
scalable and efficient time series evaluation system for encrypted medical data.
Secure Multi-Party Computation Framework: Recent years have wit-
nessed a paradigm shift in MPC frameworks, introducing an approach that is
mixed with various MPC primitives to achieve efficient secure computation. Ker-
schbaum et al. [24] design a framework combining Yao’s Garbled Circuits (GC)
and homomorphic encryption (HE). Sharemind [14] develops a high-level lan-
guage SecreC for Arithmetic sharing, and later is extended to a mixed protocol
in [13]. A very recent framework ABY [20] provides automated generation of
mixed protocols supporting efficient conversions between Arithmetic sharing,
Boolean sharing and Yao’s GC. Due to scalability, the mixed-protocols have
been applied to many applications [15, 22, 27, 28, 39]. Following the same phi-
losophy, we tailor a mixed protocol, one of the key components in our system,
to process secure DTW queries for distributed medical data. In the meantime,
Blanton et al. devise a general distributed platform enabling private medical
data analysis [12]. They take the parents assignment problem as an example to
show how their platform provides guaranteed security under different settings of
the problem and the roles played by the participants. Besides, threshold HE can
be used for MPC applications, such as coopetitive learning against a malicious
adversary [37] and user profile matching in social networks [36].
Dynamic Time Warping for Time Series Data: DTW is a prevalent dis-
tance measure in time series data related mining domains, such as medicine,
image/speech processing, and astronomy. It is firstly introduced by Berndt et al.
in [11]. To accelerate DTW, Keogh proposes an indexing method [23] to perform
similarity search on archived data. Atop this index, they design a suite of opti-
mization techniques [29] to search on trillions of streaming data. Beyond search,
DTW can also be applied to time series classification [18] and clustering [10].

3 Background

Dynamic Time Warping: Dynamic time warping [23] is a distance metric
which measures the dissimilarity over time series data. It is effective to handle
time shifting, whereby two time series with similar wavelets are matched even if
they are “shrank” or “stretched” in the time axis.

Let X = (x1, ...,x|X|) and Y = (y1, ...,y|Y |) be two time series sequences
consisting with |X| and |Y | numbers of dim-dimensional vectors xi and yj ,
respectively. Let Xi be the subsequence of X starting from the first vector x1

to the i-th vector xi; likewise, Yj is the subsequence of Y from y1 to yj . In our
paper, we consider only the data points in X and Y being integers. Without loss
of generality, we compare equal-length sequences, that is |X| = |Y |. We further
denote a dataset contains n-sequences as Y = {Y 1, ..., Y n}.

Title Suppressed Due to Excessive Length 5

To align X and Y , we define an optimal warping path indicating the min-
imum warping cost. It is a monotonic and non-overlapped warping path W =
w1, . . . , wK , and has to use every index of each time series. W can be evaluated
via a dynamic programming approach, i.e., recursively finding the minimum
cumulative distance D(Xi, Yj) of slightly larger portions of subsequences until
reaching the entire sequences. D(Xi, Yj) is declared as the underlying distance
dist(xi,yj) (i.e., the Euclidean distance (ED)) plus the minimum of cumulative
distances of adjacent cells. We formulate it as follows:

D(Xi, Yj) = dist(xi,yj) +min{D(Xi−1, Yj−1), D(Xi−1, Yj), D(Xi, Yj−1)}. (1)

The DTW (X,Y) is equal to D(X|X|, Y|Y |), and the optimal W is found in the
reverse order by a greedy search.

DTW normally applies a global constraint to avoid pathological warping,
where a relatively small portion of one sequence would not be warped to map
a considerably large portion of another. The constraint introduces a cr-width
sliding window that only the elements within the window can be compared;
that is for wk = (i, j)k, i, j should be j − cr ≤ i ≤ j + cr. Both the time and
space complexity of DTW is O(|X||Y |). In our design, we expect the proposed
protocol to output DTW yet hiding the optimal path since it is the intermediate
result. Hence, only the cumulative distances of the adjacent cells are required to
be maintained in each iteration. As a result, a linear space complexity can be

achieved by only maintaining {D(Xi, Yj)}|Y |j=1 and {D(Xi−1, Yj)}|Y |j=1 in memory.
Keogh’s Lower Bound of DTW: Since calculating DTW is very time-demanding,
we use the linear-time lower bounding LBKeogh algorithm [23] to prune off se-
quences that are not possible to be the best match. Given a query X, LBKeogh
defines an upperbound U and a lowerbound L surrounding it as ui = max(xi−cr :
xi+cr) and li = min(xi−cr : xi+cr) that ∀i,ui ≥ xi ≥ li. Given candidate Y , the
distance LBKeogh(X,Y) is formulated as follows:

LBKeogh(X,Y) =

√√√√√√ |X|∑
i=1


(yi − ui)

2 if yi > ui

(yi − li)
2 if yi < li

0 otherwise

(2)

It is provably tight that LBKeogh(X,Y) ≤ DTW (X,Y) and holds linear time
complexity. LBKeogh can be deemed as the ED between Y and the closer one of
{U,L}. Since the function of ED is monotonic and concave, we omit the step of
square root for the ease of deploying to secure computation.
Density Peaks Clustering: Density Peaks (DP) algorithm [30] is a density-
based clustering algorithm that is amiable for time series with various shapes
(unlike R-tree based DBSCAN and k-means). Given a dataset Y and a matrix
containing all-pair DTW distances, the DP elects k cluster centers {C1, ...,Ck},
where each C is surrounded by lower local density neighbors and is relatively far
from any points with higher local densities.
Arithmetic Sharing: On input an `-bit value x, Arithmetic Sharing [6, 20]
generates shares 〈x〉A0 , 〈x〉A1 in the ring Z2` uniformly at random, where 〈x〉A0 +

6 Liu, X. & Yi, X.

〈x〉A1 ≡ x (mod 2`). Unless an explicit claim, all operations performed under
(mod 2`). For our shared dim-dimensional vectors, Pi calculates the addition
non-interactively as 〈z〉Ai = 〈x〉Ai +〈y〉Ai . Multiplication relies on a pre-computed
Beaver’s Multiplication Triple [9] (denote as MT) of the form 〈c〉A = 〈a〉A ·〈b〉A.
Pi computes 〈e〉Ai = 〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai , and recover e and
f by sending to the counter-party, and let Mul(〈x〉Ai , 〈y〉Ai) = i · e × f + 〈a〉Ai ×
f + 〈b〉Ai × e + c. The MTs can be generated offline and shared obliviously via
correlated oblivious transfer extension (COT)1 [5,20]. Details of generating MTs
are given in the full version.
Yao’s Garbled Circuits: Yao’s protocol (aka garbled circuits (GC)) [35] em-
powers two secret owners evaluating an arbitrary function f(·, ·) over their in-
puts x0, x1 and obtaining no more than the function’s outputs z. Let GI(z) ←
GC(x0;x1, f) denote the above procedure, where GI(z) is the garbled label as-
sociated with z. The secret owners can learn the output by communicating the
truth table. The point-and-permute [26] optimization allows to reuse the circuit
for the same f with different inputs. Given a random in Z2` , Yao’s share 〈x〉Y
and Arithmetic share 〈x〉A can be converted via modulo subtraction/addition
inside the circuits.

4 Our Proposed Design

4.1 Architecture and Assumptions

Figure 1 depicts our architecture overview. It comprises three entities: the owners
of medical time series data (aka “hospitals” for brevity), the querier, and the
computational services (aka “services”). In our setting, the hospitals gather and
archive their medical datasets independently, and a querier holds a patient’s
data (i.e., the query). Both of them require guaranteed privacy, while all entities
perform in a semi-honest manner. Everyone will not deviate from the protocol
but aiming to deduce the private inputs supplied by other entities. The DTW
query 2 is issued by the querier who can learn and recover the encrypted results
that match the query at the end. We do not constrain the roles of the querier; an
individual (medical researcher) or a healthcare stakeholder (hospital) is entitled
to extract knowledge about a specific disease. In a typical scenario of medical
data analysis, some hospital with insufficient volume of data wishes to act as the
querier and seeks assistance from other hospitals to draw a robust conclusion that
is only available to herself. Considering the privacy protection, we emphasize two
requirements: 1) the querier has to be distinct from the computational services,
and 2) each hospital should archive the dataset independently and distributes
data directly to the services. In this setting, even the querier conspires with a
hospital; they cannot learn private data supplied by the others.

Our security guarantee hinges on the primary requirement that the services
learn nothing about the private data they are evaluating. For this reason, it

1
[20] suggests that the OT-based Multiplication Triples generation is faster than the Homomorphic
encryption-based protocol by up to three orders of magnitude.

2
The DTW query is the process to find the sequences similar to the query based on the DTW
distance within a given threshold.

Title Suppressed Due to Excessive Length 7

Secure computationPreprocessing Querying

Clustering

Clustering

Clustering

Cluster centers

Candidate clusters Result

Query

Computational services Querier

Hospitals

Fig. 1: System architecture

is essential to expatiate on the trust assumption of the services. They are two
semi-honest but non-colluding services and each consists of a bunch of servers
dedicating to the computation over encrypted data. In practice, they can be
viewed as the full-fledged cloud services, and follow the prescribed protocols
faithfully. It is reasonable since cheating would ruin their reputations. Besides,
they should not be simultaneously corrupt or connive with each other. This
requirement can be realized by setting up a service agreement that restricts the
collusion when signing the business contracts with the two services.
Remark: The above server-aided computational model follows the rationales
of prior works [27, 28]. Delegating our secure computation on two services re-
laxes the other parties from involving in all through. Yet it is distinct from the
server-aided storage model [4] with regard to the consequences when the trust
assumptions are broken. In the server-aided storage model, a logically single
data owner partitions the data into shares and outsources each share in different
untrusted storage services who cannot communicate mutually. Collusion leads
to recover the entire dataset and incurs catastrophic consequence as the whole
system is compromised directly. Whereas in our setting, collusion affects the pri-
vacy of query and query related data, since they are only data engaged in the
computation and are deployed directly to the services.

4.2 Protocol Overview

Our protocol includes four phases: Preprocessing, Setup, Pruning and Analysis.
The Preprocessing and Setup phases are performed offline at the local side of
each party, whereas the rest two phases are undertaken online mainly between
two services. The core innovation of our protocol is a secure pruning strategy
via two treatments: (1) the Pruning phase for securely comparing the query with
the preprocessed cluster centers to prune away the unpromising clusters whose
centers are dissimilar to the query, and (2) a secure lower bounding function
(the SLB function) to ensures the sequences that are not possible to be the best
match being eliminated from the quadratic-time DTW computation (the SDTW
function).

To support the pruning strategy, in the Preprocessing phase, each hospital
clusters its local sequences into clusters, electing the centers on behalf of the
corresponding clusters based on the DP algorithm. Meanwhile, the querier syn-
thesizes an upperbound (U) and a lowerbound (L) binding the range of query

8 Liu, X. & Yi, X.

based on the LBKeogh algorithm. The synthesized bounds will join the SLB
computation in online phases. The intuition of preprocessing is to minimize the
portion of secure computation on protected sequences, which always induces
higher overheads than an equivalent calculation over the local plaintext values.
Afterward, in the Setup phase, both the hospitals and the querier generate secrets
of their private sequences under MPC primitives.

To realize the first treatment, the Pruning phase securely compares the query
with the cluster centers only. If a center is not similar to the query, none of the se-
quences in the cluster it represents for would be into the querier’s interest. Thus,
all sequences in the cluster will be eliminated from further consideration. And
if none of the centers of a hospital is similar to the query, it will be considered
as an unpromising hospital, then the services will revoke the communications
between them. Thereafter, the promising hospitals will be notified to supply the
secrets of only candidate clusters into the Analysis phase. This treatment accel-
erates the overall efficiency by avoiding a considerable amount of sequences from
the sequential scan in the Analysis phase. Besides, involving only the promising
hospitals in the secure computation can relax other data owners, thus benefiting
the case that whose medical devices possessing the data sources cannot always
stay online, such as the wearable health-monitor devices and network-enabled
implantable medical devices [16].

The second treatment is integrated throughout the online phases. Upon re-
ceiving the query, U , and L, whenever in the phase of comparing query with
cluster centers (the Pruning phase) or scanning through all sequences in candi-
date clusters (the Analysis phase), the services always run the SLB function at
first to abandon the unpromising sequences as early as possible. Afterward, the
SDTW function is carried out between the query and eligible sequences which
are closer enough according to the output of the SLB function. This treatment is
economical since SLB involves fewer operations and can be smoothly proceeded
in parallel, unlike the must-be-sequential SDTW computation. At the end of the
Analysis phase, the services send the result back to the querier. Upon receiving
the result, the querier locally reconstructs it yet knowing nothing else.

SLB SDTW

Cluster	
centers

Lowerbound,	
upperbound

SCMP

Query

SLB SDTW

Candidate	
sequences

Lowerbound,	
upperbound

SCMP

Query

Threshold

Pruning phase Analysis phase

LB	
distance

SCMP

DTW
distance

Result
SLB

SBranch

SSED

SDTW

SFindMin

SSED

LB	
distance

Threshold Threshold

Fig. 2: Online phases overview

Title Suppressed Due to Excessive Length 9

4.3 Design Rationale

As described above, our secure DTW-based medical analysis protocol is con-
ducted via a hybrid approach that any time series sequences are tested by the
LB distance ahead of calculating the DTW distance, defined in Eq 2 and Eq 1,
respectively. We observe that both equations are performed in an iterative way
comprising a series of aggregations. Each aggregation can be divided into two
subtasks: (1) computing the secure squared Euclidean distance (SED), and (2)
comparison among two items (for LB distance) or three items (for DTW dis-
tance). The former consists of only additions and multiplications, and the lat-
ter can be achieved by boolean operations. To tackle the above subtasks in a
privacy-preserving manner, we choose Arithmetic Sharing for computing secure
SED distance and Yao’s GC for comparison regarding the reasons below.

1) Using Yao’s GC for all aggregations requires a monolithic circuit solving
a linear system as follows. On inputs dim-dimensional vectors xi of query X
and yj of candidate Y , the circuit sequentially computes (xi − yj)

2 along with
a comparison, and sums up the result of each iteration as the input of the next
iteration. The size of the circuit relies on both dim and the sequence lengths.
Putting aside the design difficulty in practice, evaluation on such a large circuit
is quit time-consuming. Meanwhile, the circuit cannot be reused on different
queries with various lengths due to the dependence between the circuit size and
the sequence lengths. We further observe that dim is relatively small in real
applications and the comparison involves few items. Thus, we apply GC only for
comparison. With optimization [26], we can build the circuit once at the setup
phase and used in several epochs . Note that prior work [20] shows that for
an atomic comparison circuit on an integer (i.e., 32-bit values) with long-term
security parameter, Yao’s GC introduces less query time and bandwidth because
of its constant round of interaction.

2) To avoid the overhead from crypto-operations and considerable data trans-
fer, we choose Arithmetic Sharing to protect the data as random shares in Z2` .
For ` = 32-bit operands, it depicts the asymptotic communication [20]. As a
result, the online phase is much faster as only a few data (less than 1MB for
104 data points) are transferred beyond the private shares, particularly in our
cross-institute scenario.

Given the rationale, the Setup phase performs offline to generate the shares
of private data, and prepare MTs assisting Arithmetic multiplication. As de-
picted in Figure 2, the online phases involves three distance functions SSED,
SLB and SDTW, and three GC-based gadgets SBranch, SFindMin, and SCMP.
The Pruning phase securely measures the LB and DTW distances between the
centers and query via the SLB and the SDTW functions, respectively. Similarly,
the Analysis phase computes LB and DTW between candidate sequences and
query. All distances are compared with threshold via the SCMP gadget. Both
the SLB and SDTW functions resort the SSED function to compute the SED dis-
tance. While the SLB resorts the SBranch gadget to determine the LB distance
between sequence and U , L based on their rank, the SDTW uses SFindMin to
find the minimum cumulative distance.

10 Liu, X. & Yi, X.

Gadget SBranch(〈m1〉A, 〈m2〉A, 〈c1〉A, 〈c2〉A, ω):
• S1 → S0 sends a pre-built circuit of function f along with its truth table.
• S0 evaluates GI(z) ← Y2A(A2Y(GC(ω, 〈m1〉A1 , 〈m2〉A1 , 〈c1〉A1 , 〈c2〉A1 ; 〈m1〉A0 ,
〈m2〉A0 , 〈c1〉A0 , 〈c2〉A0 , f))), where f performs the following:
1. switches 〈m1〉A, 〈m2〉A, 〈c1〉A, 〈c2〉A to m1, m2, c1, c2 via modular

additions;
2. compares m1 and m2, then sets a bit b that b = 0 indicates ‖m1‖ < ‖m2‖

and b = 1 indicates ‖m1‖ ≥ ‖m2‖;
3. if b = 0, sets z = 〈dist〉A0 = (c1 − ω) mod 2` so that 〈dist〉A1 = ω;
4. if b = 1, sets z = 〈dist〉A0 = (c2 − ω) mod 2` so that 〈dist〉A1 = ω;
5. outputs GI(z) to the evaluator S0.

• S0 decodes according to the truth table to get his share as 〈dist〉A0 = z.
• S1 sets his share as 〈dist〉A1 = ω

Fig. 3: SBranch gadget.

4.4 Cryptographic Gadgets

Secure Branching Gadget: A branching function is that one of the two values
c1 or c2 could be assigned to the output c depending on the rank of input
messages m1 and m2; that is, if (m1 > m2) then c ← c1 else c ← c2. Let c1
denote (y − u)2 and c2 denote (l − y)2. Eq 2 (LBKeogh) can be viewed as two
branching functions running in parallel, and formulated as: (1) if (y > u) then
dist← c1 else dist← 0; and (2) if (l > y) then dist← c2 else dist← 0. Along
with the implicit condition, i.e., ∀l,u that (l < u), this variant is correct as it
suggests three conditions (y > u&&y > l), (y < u&&y > l), and (y < u&&y <
l) corresponding to the result that dist could be c1, 0, or c2, respectively. A naive
approach solving this branching function is to determine the rank of y and u (or
l) via GC, which compares its inputs, and outputs a bit indicating their rank,
so that S0 and S1 can choose the result from c1 and c2. However, leaking the
rank of every vector in Y and {U,L} allows an adversary to estimate a tight
range of query X through adaptive testings with a set of evenly incremented Y .
Thus, it is desired to devise a secure branching scheme solving two branching
functions at the same time, and obliviously assigns the shares of distance to S0

and S1 according to the rank of two inputs.3 In addition, the outputs of the
scheme should be well masked. Even after S0 and S1 adding the two outputs up,
they cannot deduce the conditions based on the shares they have received. We
now describe our proposed secure branching gadget SBranch. Given S1 as the
generator and S0 as the evaluator, the shared messages m1, m2, the shares of
the values to be selected c1, c2, a pre-build circuit, and ω ∈ Z2` . The SBranch
gadget is detailed in Figure 3. It hides the rank of m1 and m2 because S∗ always
obtains his share as a randomly generated value distributed in Z2` .

Remark: Prior work [27] constructs a branching scheme via GC to test if the
input lies in a constant interval. Their scheme cannot directly apply to solve our
branching assignments in LBKeogh, where the conditions rely on the values of
variables u and l. Another work [8] represents a linear branching program as a

3
Another way is building a monolithic circuit to solve a decision tree. This is not under our
consideration, since it leads higher latency.

Title Suppressed Due to Excessive Length 11

decision tree, where each input is encrypted by homomorphic cryptosystem and
comparison is performed via GC, thus introducing heavy crypto-operations.

Gadget SFindMin(〈a〉A, 〈b〉A, 〈c〉A):
• S1 generates r ∈R Z2` at random.
• S1 → S0 sends a pre-built circuit of function f(·) along with its truth table.
• S0 evaluates GI(z) ← Y2A(A2Y(GC(r, 〈a〉A1 , 〈b〉A1 , 〈c〉A1 ; 〈a〉A0 , 〈b〉A0 , 〈c〉A0 , f))),

where f performs the followings:
1. switches 〈a〉A, 〈b〉A and 〈c〉A to a, b and c via modular additions;
2. compares a, b and c to find the minimum value Dmin;
3. switches Dmin back to 〈Dmin〉A by performing modular subtraction,

where 〈Dmin〉A1 = r and z = 〈Dmin〉A0 = (Dmin − r) mod 2`;
4. outputs GI(z) to the evaluator S0.

• S0 decodes according to the truth table to get his share 〈Dmin〉A0 = z.
• S1 sets his share 〈Dmin〉A1 = r.

Fig. 4: SFindMin gadget.

Secure Find Minimum Gadget: Gadget SFindMin is used to find the mini-
mum value among three given shares, and generate new shares of the minimum
value. In our protocol, SFindMin is invoked by the SDTW function. It chooses
the minimum cumulative distance 〈Dmin〉A and re-generates new shares. This
operation hides the index of the Dmin, because revealing the index can leak the
optimal warping path of X and Y , and further let the adversary estimate the
range of X (or Y). Given S1 as the generator and S0 as the evaluator, a pre-built
circuit, the SFindMin gadget is detailed in Figure 4. Let S1 generate a random
r ∈ Z2` as his share 〈Dmin〉A1 , gadget SFindMin outputs 〈Dmin〉A0 to S0.

Gadget SCMP(〈a〉A, 〈b〉A):
• S1 generates r ∈R Z2` at random.
• S1 → S0 sends a pre-built circuit of function f along with its truth table.
• S0 evaluates GI(z) ← Y2A(A2Y(GC(〈a〉A1 , 〈b〉A1 ; 〈a〉A0 , 〈b〉A0 , f))), where f

switches 〈a〉A and 〈b〉A to a and b via modular additions, and compares a
and b. Then sets a bit z that if z = 0, a < b and if z = 1, a ≥ b. Then sets
z = (a− r) mod 2` if a < b, and z = (b− r) mod 2` if a ≥ b.

• S0 decodes GI(z) according to the truth table to obtain z.

Fig. 5: SCMP gadget.

Secure Comparison Gadget: Gadget SCMP is used to compare two given
shares and outputs a bit indicating their rank via GC. In our protocol, it de-
termines whether a specific distance is within a matching threshold. Given S1

as the generator and S0 as the evaluator, a pre-build circuit, the gadget SCMP
compares its two inputs and output a bit indicating the rank. The SCMP gadget
is detailed in Figure 5. It can be realized in two versions achieving different secu-
rity strengths and performance. Version 1 reveals the rank of LB/DTW distances
and threshold when comparing the cluster centers, since this information is not
directly related to the private inputs and protocol results. Version 2 in color

12 Liu, X. & Yi, X.

compares DTW distances of candidate sequences and threshold, and outputs
the shares of rank securely.

Function SSED(〈x〉A, 〈y〉A, 〈x2〉A, 〈y2〉A,MT):
• S∗ sets 〈dist〉A∗ = 〈x2〉A∗ + 〈y2〉A∗ − 2(MulA(〈x〉A∗ , 〈y〉A∗)), where ∗ ∈ {0, 1}.

Fig. 6: SSED function.

4.5 Distance Functions

Secure Squared Euclidean Distance Function: Suppose that S0 and S1

already obtain the shared vectors of query X and the candidate sequence Y ,
and the shares of their squared values, denoted as 〈x〉A and 〈y〉A, and 〈x2〉A and
〈y2〉A. They also have a bunch of pre-generated MTs. S0 and S1 run function
SSED to attain 〈dist〉A0 and 〈dist〉A1 as shown in Figure 6.

Algorithm 1 Secure LBKeogh function

1: function SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Y 〉A, 〈Y 2〉A,MTs)
2: S∗ initializes 〈LB〉A∗ and r ← 0 for ∗ ∈ {0, 1}.
3: for i ∈ [1, |X|] do
4: S∗ initializes 〈dist1〉A∗ , 〈dist2〉A∗ , 〈c1〉A∗ and 〈c2〉A∗ .
5: S1 generates ω1

i , ω
2
i ∈ Z2` at random.

6: S∗ runs to get 〈c1〉A∗ ← SSED(〈ui〉A, 〈yi〉A, 〈y2
i 〉A, 〈u2

i 〉A, MT)
7: S∗ runs to get 〈c2〉A∗ ← SSED(〈li〉A, 〈yi〉A, 〈y2

i 〉A, 〈l2i 〉A, MT).
8: S∗ runs to get 〈dist1〉A∗ ← SBranch(〈u〉A, 〈y〉A, 〈c1〉A, r, ω1

i).
9: S∗ runs to get 〈dist2〉A∗ ← SBranch(〈y〉A, 〈l〉A, 〈c2〉A, r, ω2

i).
10: S∗ sets 〈dist〉A∗ = 〈dist1〉A∗ + 〈dist2〉A∗ , and 〈LB〉A∗ = 〈LB〉A∗ + 〈dist〉A∗ .
11: end for
12: S∗ gets 〈LB〉A∗ .
13: end function

Secure LBKeogh Function: Algorithm 1 shows the SLB function running be-
tween sequence Y and two synthesized sequences U and L. It iteratively sums up
|X| numbers of secure SED distances indicating how far Y falls out of the range
of X bound by U and L. Let 〈Y 〉A, 〈Y 2〉A, 〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A denote
the shares of Y , U , and L, and the shares of their squared values, respectively.
On inputs these shares, and MTs, the SLB function outputs 〈LB〉A∗ in private.
In detail, once it is launched, S∗ initialize variable r = 0 as one of the distances
awaiting to be selected by the SBranch gadget, where ∗ ∈ {0, 1}. In each itera-
tion, S1 generates randomnesses ω1

i , ω
2
i ∈ Z2` . Afterwards, S∗ invoke the SSED

function to compute the shares of dist(〈yi〉A, 〈ui〉A) as 〈c1〉A∗ , and the shares of
dist(〈yi〉A, 〈li〉A) as 〈c2〉A∗ . They then invoke SBranch to assign one of the values
〈c1〉A∗ (or 〈c2〉A∗) and r to 〈dist1〉A∗ (or 〈dist2〉A∗), according to the rank of y and
u (or l). The output distance is masked with ω1

i (or ω2
i). In other words, the

value of 〈dist1〉A could be c1 or 0, while the value of 〈dist2〉A could be c2 or 0.
This treatment is correct, since after S0 and S1 adding them up, the value of
〈dist〉A could be c1, c2 or 0, yet not c1 + c2, because of the implicit condition
u > l excludes this case. At the end of each iteration, S∗ add 〈dist〉A∗ on the

Title Suppressed Due to Excessive Length 13

〈LB〉A∗ attained in the previous iteration. Ultimately, they get the final result of
secure LB distance between Y and {U,L}.

Algorithm 2 Secure DTW function:

1: function SDTW(〈X〉A, 〈X2〉A, 〈Y 〉A, 〈Y 2〉A,MTs)
2: S∗ initializes 〈DTW 〉A∗ and two arrays cost∗ and costprev,∗ with numeric infinity

(INF), that each has (2cr + 1) numbers of cells for ∗ ∈ {0, 1}.
3: for i ∈ [0, |X| − 1] do
4: S∗ initializes k ← max(0, cr − i).
5: for j ∈ [max(0, i− cr), min(|X| − 1, i+ cr)] do
6: S∗ initializes 〈a〉A∗ , 〈b〉A∗ , 〈c〉A∗ with INF, 〈dist〉A∗ , and 〈D〉A∗ .
7: If i = 0 && j = 0, S∗ jointly run to get 〈dist〉A∗ ← SSED(〈x0〉A, 〈y0〉A,
〈x2

0〉A, 〈y2
0〉A, MT), and stores each share at cost∗[k]. S∗ sets k ++, and continues

to next iteration.
8: If j ≥ 1 && k ≥ 1, S∗ sets 〈b〉A∗ ← cost∗[k − 1]; else INF.
9: If i ≥ 1 && k + 1 ≤ 2 ∗ cr, S∗ sets 〈a〉A∗ ← costperv,∗[k + 1]; else INF.

10: If i ≥ 1 && j ≥ 1, S∗ sets 〈c〉A∗ ← costprev,∗[k]; else INF.
11: S∗ run 〈D〉A∗ ← SSED(〈xi〉A, 〈yj〉A, 〈x2

i 〉A, 〈y2
j 〉A,MT) + SFindMin

(〈a〉A, 〈b〉A, 〈c〉A), and stores each share at cost∗[k], and then sets k ++.
12: end for
13: S∗ copies cost∗ to costprev,∗, and cleans cost∗.
14: end for
15: S∗ gets 〈DTW 〉A∗ ← costprev,∗[cr].
16: end function

Secure DTW Function: The SDTW function, as Algorithm 2 illustrates, is the
core building block as it measures whether a sequence Y matches the given query
X based on DTW. On inputs 〈Y 〉A, 〈Y 2〉A, 〈X〉A, 〈X2〉A and MTs, it returns
〈DTW 〉A. Because the parameter cr of global constraint is a data-independent
constant, we assume it is known by S0 and S1 as a system parameter. We briefly
sketch the philosophy of realizing the SDTW function. We maintain a pair of
arrays cost and costprev with 2cr + 1 cells to record the cumulative distances
between Xi, Xi+1 and Y . For each i, the arrays act as vertical bars moving
from left to right and bottom-up one cell each iteration. Let us consider how to
calculate one distance D(Xi, Yj) only. Assume cell cost[k] store D(Xi, Yj), where
k ∈ [max(0, cr−i), 2cr+1]. We first calculate dist(xi,yj). We then check whether
the awaiting calculated D(Xi, Yj) is located at the edge of the sliding window
formed by the global constraint, i.e., at cost∗[0] or cost∗[2cr+ 1]. If not, we find
the minimum value among its adjacent cumulative distances, i.e., D(Xi, Yj−1),
D(Xi−1, Yj) and D(Xi−1, Yj−1) located at cells cost[k − 1], costprev[k + 1] and
costprev[k]. Otherwise, we retrieve the minimum among the existences of the
above three values. We add the above results up as D(Xi, Yj), and store into
cell cost[k]. At the end, the DTW is located at costprev[cr]. Following the above
methodology, S0 and S1 iteratively calculate 〈dist〉A∗ via the SSED function, find
the minimum 〈Dmin〉A∗ among 〈a〉A∗ , 〈b〉A∗ and 〈c〉A∗ via the SFindMin gadget, and
sum them up as 〈D〉A∗ . Ultimately, S0 and S1 obtain 〈DTW 〉A∗ at costAprev,∗[cr].

14 Liu, X. & Yi, X.

Protocol Φ:
Setup(X,U,L, {C1, ...,Cm},∆):

1: S0 and S1 interactively generate M sets of MTs. S1 generates three circuits
for the SBranch, SFindMin and SCMP gadgets.

2: Q locally generates the shares 〈∆〉A, 〈X〉A, 〈X2〉A, 〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A,
and distributes them to S0 and S1.

3: Each Hα locally generates the shares 〈Y 〉A and 〈Y 2〉A of Y ∈ Yα, 〈Cβ〉A
and 〈(Cβ)2〉A of Cβ , and dummy indices rβ ∈ {r1, ..., rk} randomly for each
cluster, where β ∈ [1, k], and distributes them to S0 and S1.

Pruning(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈X〉A, 〈X2〉A, 〈Cβ〉A, 〈(Cβ)2〉A, 〈∆〉A):

1: S0 initializes an array ArrCα .
2: for each cluster center Cβ ∈ Cα in each Hα do
3: S∗ run 〈LBC〉A∗ ← SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Cβ〉A, 〈(Cβ)2〉A,MTs)

for ∗ ∈ {0, 1}.
4: If SCMP(〈LBC〉A, 〈∆〉A) == 0, S∗ run 〈DTWC〉A∗ ← SDTW(〈X〉A, 〈X2〉A,
〈Cβ〉A, 〈(Cβ)2〉A, MTs). Else, continue to next.

5: If SCMP(〈DTWC〉A, 〈∆〉A) == 0, S0 adds index rβ of cluster Cβ to ArrCα .
Else, continue to next.

6: end for
7: If ArrCα =⊥, S∗ close the connections with Hα. Else, S0 sends ArrCα to Hα.
8: Hα distributes 〈Ȳ 〉A of each Ȳ in all candidate clusters C̄β to S0 and S1.

Analysis(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈X〉A, 〈X2〉A, 〈Ȳ 〉A, 〈Ȳ 2〉A, 〈∆〉A):

1: S∗ initialize arrays Arrα,∗.
2: for each sequence Ȳ in all candidate clusters C̄β do
3: S∗ run 〈LB〉A∗ ← SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Ȳ 〉A, 〈Ȳ 2〉A, MTs).
4: If SCMP(〈LB〉A, 〈∆〉A) == 0, S∗ run 〈DTW 〉A∗ ← SDTW(〈X〉A, 〈X2〉A,
〈Ȳ 〉A, 〈Ȳ 2〉A, MTs). Else, continue to next.

5: S∗ tun to get 〈res〉A∗ ← SCMP(〈DTW 〉A, 〈∆〉A)and store to Arrα,∗.
6: end for
7: S∗ sends Arrα,∗ to Q.
8: Q runs reconstruction RecA(res) and remove 0 to get each DTW in Arrα.

Fig. 7: Secure DTW-based medical time series analysis protocol

4.6 Secure DTW-based Medical Analysis Protocol

Figure 7 describes our protocol Φ that modularly composes the above crypto-
gadgets and atomic functions.

Setup Phase: Consider each hospital Hα ∈ {H1, ...,Hm} holds an n-sequences
dataset Yα = {Y 1, ..., Y n}. Each hospital pre-partitions the local dataset as k
clusters C1 = {C1, ..., Ck} represented by centers C1, ...,Ck. Given pre-computed
synthesized U and L binding the query X, and the matching threshold ∆ held
by querier Q. Once the Setup phase begins, the querier and all hospitals run in
parallel to generate the Arithmetic shares of their private data, and distribute the
shares to S0 and S1. To assist multiplication over shares, S0 and S1 interactively
derive dim-dimensional MT . (〈c〉A, 〈a〉A, 〈b〉A) that c = a×b. Note that single
multiplication operation requires one MT . Apart from MTs, S1 generates three
circuits for the SBranch, SFindMin and SCMP gadgets, respectively.

Title Suppressed Due to Excessive Length 15

Secure Pruning Phase: The Pruning phase runs in parallel between each pair
of instances of S0 and S1 connecting with each Hα. Without loss of generality,
we discuss one pair of instances with Hα as an example. S0 initializes a dynamic
array ArrCα used to store the dummy index rβ of the potential clusters Cβ . S0

and S1 jointly run the SLB function to get 〈LBC〉A∗ between Cβ and {U,L},
where ∗ ∈ {0, 1}. They then invoke the SCMP gadget to check if the resulted
〈LBC〉A∗ is less than 〈∆〉A. If so, they run the SDTW function to get 〈DTWC〉A∗
and check whether it is less than 〈∆〉A. If it is, S0 adds the dummy index rβ
of the currently processed Cβ to ArrCα . After checking all Cβ , if ArrCα is not
empty, S0 sends it to Hα, and Hα sends back the shares of each sequence Ȳ
in candidate clusters C̄β corresponding to rβ . Otherwise, S0 and S1 revoke the
connection with Hα who does not need to stay online anymore.
Secure DTW-based Analysis Phase: The Anaysis phase runs in parallel
between S0 and S1 with each candidate hospital H̄α. S∗ initializes dynamic array
Arrα,∗ to store the shares of resulting secure DTW distances, where ∗ ∈ {0, 1}.
For each candidate sequence Ȳ (i.e., the results of previous phase), S∗ runs
the SLB function to get the shares of LB distance between Ȳ and X, denoted
as 〈LB〉A∗ . S∗ then calls the SCMP gadget to compare 〈LB〉A and 〈∆〉A. If
〈LB〉A∗ is within the threshold, they run SDTW to get 〈DTW 〉A∗ . Services then
input 〈DTW 〉A and 〈∆〉A to the SCMP gadget which outputs the shares of the
smaller one, and store to Arrα,∗. Ultimately, S0 and S1 send Arrα,∗ to Q who
then reconstructs the results, excludes the values identical to threshold, and get
DTWs indicating how likely an individual will have a specific disease.
Remark of Complexity: Suppose sequence length |X|, global constraint cr,
pruning ratio σ of the SLB function, and pruning ratio µ of the Pruning phase.
Given all cluster centers Cα,β , all dataset Yα with n sequences, where α ∈
[1,m], β ∈ [1, k]. Computing one SLB function requires 2|X| calls of the SSED
function and the SBranch gadget. Computing one SDTW function runs |X|·(2cr+
1)− cr · (cr + 1) (denoted as θsdtw) times the SSED function and the SFindMin
gadget. The number of calls of atomic functions is summarized in Table 1.

#SBranch #SFindMin #SCMP #SSED #SLB #SDTW

Pruning phase 2|X|mk θsdtwσmk (1 + σ)mk (θsdtwσ + 2|X|)mk mk σmk

Analysis phase 2|X|µmn θsdtwµσmn (1 + σ)µmn (θsdtwσ + 2|X|)µmn µmk µσmn

Table 1: Number of calls of atomic functions

4.7 Security Guarantee

For our multi-instance and concurrent-execution protocol Φ, we define security
following the Universally Composable (UC) security framework [17], where under
a general protocol composition operation (universal composition), the security
of our protocol is preserved. Consider engaged parties a querier Q, hospitals
H1, ...,Hm and two non-colluding services S0, S1. Suppose a semi-honest admis-
sible adversary A who can corrupt the querier, any subset of hospitals, as well
as one of the two non-colluding services at most, i.e., if S0 is compromised by
A, S1 acts honestly; vice versa. Yet we do not restrict the collusions among the

16 Liu, X. & Yi, X.

0 0.5 1 1.5 2
Time (ms)

0

0.5

1

C
D

F

Empirical CDF

Fig. 8: SSED unit time.

0 5 10
Time (s)

0

0.5

1

C
D

F

Empirical CDF

Fig. 9: SLB unit time.

0 100 200 300 400 500
Time (s)

0

0.5

1

C
D

F

Empirical CDF

Fig. 10: SDTW unit time.

rest parties. Since our protocol directly follows the security of the Arithmetic
sharing [6] and GC [35], and all medical sequences, MTs, and intermediate re-
sults are well protected as randomly generated shares in the ring Z2` , we argue
that Φ UC-realizes an ideal functionality F against A. The security captures the
property that the only pertinent data learned by any corrupted parties are their
inputs and outputs from the protocol yet nothing about the data of the remain-
ing honest parties. Due to space constraints, formal security proof is given in the
full version of this paper.

5 Performance Evaluation

5.1 Implementation and Setup

We implement a prototype of our secure DTW-based medical analysis system
in Java. For the choice of OT and GC, we utilize FlexSC [34], i.e., a Java-based
toolkit implementing extended OTs [5] and optimizations of GC. Regarding
Arithmetic Sharing, we set the size of the ring as 231 to fit in the Java primitive
type int rather than BigInteger, resulting in acceleration on modulo addition and
multiplication. We deploy this prototype on 4 Amazon EC2 c5.4xlarge instances
running Ubuntu 16.04 LTS with 3.0GHz Intel Xeon Platinum processor (16
vCPUs), 32GB RAM, and 10Gpbs virtual NIC each; performing two services, a
hospital and a querier. The reported measurements make use of a 256Hz ECG
dataset, derived from UCR Time Series Datasets at [2] (a real-world dataset
from PhysioBank [1]). Our dataset contains 15K sequences and queries with
length 128, formed with single dimensional vectors. The dataset is stored at in-
memory Redis(v3.0.6) database as key-value pairs. We apply global constraint
cr = 0.05 ∗ 128 = 7 to LB and DTW [29].

To improve runtime performance, we use the in-memory Redis database to
catch the intermediate results, such as the all-pair distance matrix used for DP
clustering. Besides, we store a bunch of randomly generated MTs in files (300
triples each file). Once required, the services will randomly select files to retrieve
a set of MTs upon the demand of computation, and then delete the files to
ensure the randomization of MTs. Besides, we modify FlexSC slightly to enable
concurrent processing of the SLB function.

5.2 Evaluation

Cryptographic Gadgets: The performance of crypto-gadgets is summarized in
Table 7 regarding the running time on the local network, the bandwidth and the

Title Suppressed Due to Excessive Length 17

0 0.2 0.4 0.6
Time (s)

0

0.5

1

C
D

F

Empirical CDF

SBranch
SFindMin
SCMP
SCMPRank

Fig. 11: Unit time for crypto-
gadgets.

5K 10K 15K
Number of sequences

0

5K

10K

15K

20K

T
im

e
(s

)

Pruning
Analysis

Fig. 12: Overall time for on-
line phases.

Threshold
clusters

10 20 30
10511173 96.3% 93.2% 91.0%
18848334 71.6% 69.5% 68.2%
22834481 50.0% 43.9% 41.5%

Table 2: Pruning ratio of
Pruning phase

number of AND gates.All three measures are increased linearly to the number
of inputs, while the time fluctuates slightly. Besides, the empirical cumulative
distribution function (CDF), as shown in Figure 11, sheds light on the distribu-
tion of the time on running individual gadget. We grab 1K executions and all of
four gadgets can be done within 0.4 seconds.

SSED SLB SDTW
calls Time Comm. Time Comm. Time Comm.
10000 1.88s 0.30MB 18462.5s 108.7GB 2167591.4s 731.9GB
20000 3.30s 0.61MB 44609.6s 217.3GB 5221399.3s 1463.9GB
30000 4.59s 0.91MB 79900.5s 325.9GB 7551764.1s 2195.8GB

Table 3: Performance of distance functions

Distance Functions: We benchmark the execution of distance functions SSED,
SLB, and SDTW. The time and bandwidth ascend linearly for all of them in line
with the number of calls as Table 3 illustrates. In addition, we grasp 5K unit
execution times of SSED, SLB, and SDTW to form their distributions by empir-
ical CDF. As exhibited in Figure 8, the unit call of SSED can be finished within
1.5ms. Likewise, Figure 9 depicts the unit time of SLB, where 4s is sufficient to a
single execution. We further estimate the theoretical unit time of SLB, combin-
ing 128*2 calls of SSED and SBranch. Given the unit time of SBranch as 0.055s
and SSED as 1.5ms, the theoretical unit time is 15s. The retrenchment of time
consumed in practice is contributed by the concurrent implementation, where
every distance between each two data vectors can be calculated by independent
thread in parallel. Similarly, Figure 10 illustrates the unit time of SDTW, which
is larger than 200s. This confirms the reasonableness of our pruning strategy.
Yet we remark this experiment result does not beyond our expectation, because
running SDTW function over 10K sequences involves 1.92 ∗ 107 calls of SSED
and SFindMin.
Online Phases: We then turn our attention from runtime overhead of atomic
operations to the workload of each party in each phase of our protocol. The over-
all time of online phases is evaluated in chunks of 5K sequences with threshold
22834481. Each set of data is randomly selected from our dataset and partitioned
in 10 clusters. We report the number of sequences similar to the query as 8 for
5K data, 59 for 10K data, and 87 for 15K data. As Figure 12 depicts, followed
by the growth of dataset, the run-time of Pruning phase remains a flat trend as
its computational overhead depends on the number of clusters. In contrast, the

18 Liu, X. & Yi, X.

time of Analysis phase ascends sharply yet does not form linear increase, since its
workload depends on two aspects: (1) the sequential test under the SLB function
over all candidate sequences submitted to Analysis phase, and (2) the quadratic
time SDTW computation over resulting sequences from the SLB function.

The effectiveness of applying Pruning phase is confirmed via pruning ratios
with 15K sequences classified in 10, 20 and 30 clusters and a group of thresholds
randomly extracted from DTW distances. The ratio is qualitative as the number
of excluded sequences divides the size of dataset. As Table 2 exhibits, the ratio
drops down with the increasing amount of clusters and values of threshold, yet
avoiding at least 6K sequences from the sequential scan.

MTs Time Comm.

105 610.4s 2.9GB

107 60885.1s 292.6GB

109 6052449.5s 29263.2GB

Table 4: Setup phase perfor-
mance of services

queries Time
(LB/UB)

Time
(shar-
ing)

1 2.0ms 1.3ms
100 10.6ms 10.5ms
1000 51.5ms 38.5ms

Table 5: Preprocess and setup
phases performance of querier

sequences Time
(DP)

Time
(shar-
ing)

5000 5467.6s 0.2s
10000 55558.2s 0.3s
15000 421895.4s 0.6s

Table 6: Preprocess and setup
phases performance of hospital

Preprocess and Setup Phases: Table 4 shows the time and bandwidth costs
of two services in the Setup phase. Both of them rise linearly with the amount of
MTs. Table 5 shows the light workload of the querier, encompassing synthesizing
U and L in Preprocessing phase and generating shares of queries in Setup phase.
Table 6 shows the time cost of the hospital. Despite the intensive workload
brought by DP [30] clustering in Preprocessing phase, the Setup phase does not
aggravate its workload, as generating shares of 15K sequences can be completed
within 1s.

SBranch SFindMin
inputs Time Comm. Gates # inputs Time Comm. Gates

105 605.1s 3.0GB 859*105 106 5533.2s 26.9GB 764*106

106 6190.5s 30.2GB 859*106 107 58915.2s 268.9GB 764*107

107 69387.3s 301.5GB 859*107 108 576590.7s 2689.6GB 764*108

SCMP SCMP (leak rank)
inputs Time Comm. Gates # inputs Time Comm. Gates

104 46.5s 0.2GB 541*104 104 39.5s 0.17GB 350*104

105 455.1s 2.1GB 541*105 105 389.3s 1.68GB 350*105

106 4652.6s 21.3GB 541*106 106 3846.5s 16.8GB 350*106

Table 7: Performance of gadgets.

6 Conclusion

In this paper, we propose a privacy-preserving DTW-based analysis system over
distributed medical time series data. Our system constructs a scalable architec-
ture providing dedicate computational services that allow multiple healthcare
institutes to carry out secure joint medical data computation. Atop this architec-
ture, our system enables a mixed protocol with tailored atomic functions under
MPC primitives. The composed protocol empowers rich expressive power to sup-
port various functionality and strong security guarantee. To descend the query

Title Suppressed Due to Excessive Length 19

latency, together with preprocessing, we devise a two-layer pruning strategy
which reduces the portion of secure computation and excludes the unpromising
sequences from a sequential scan under DTW. Comprehensive empirical valida-
tion shows the potential of our system to be deployed in practice.

Acknowledgment This work was supported by Australian Research Council
Discovery and Linkage Projects (DP180103251 and LP160101766).

References

1. Physiobank atm. Online at http://physionet.org/cgi-bin/atm/ATM

2. Ucr time series classification archive. Online at https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/

3. 104th United States Congress: Health Insurance Portability and Accountability
Act of 1996 (HIPPA). online at https://www.hhs.gov/hipaa/index.html (1996)

4. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed
architecture for secure database services. Proc. of CIDR (2005)

5. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Proc. of ACM CCS (2013)

6. Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private collaborative
forecasting and benchmarking. In: Proc. of WPES (2004)

7. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: Proc. of ACM
CCS (2011)

8. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A.R., Schneider, T.: Privacy-
preserving ecg classification with branching programs and neural networks. IEEE
TIFS (2011)

9. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Proc. of
Crypto (1991)

10. Begum, N., Ulanova, L., Wang, J., Keogh, E.: Accelerating dynamic time warping
clustering with a novel admissible pruning strategy. In: Proc. of ACM SIGKDD
(2015)

11. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Proc. of KDD workshop (1994)

12. Blanton, M., Kang, A.R., Karan, S., Zola, J.: Privacy preserving analytics on
distributed medical data. CoRR abs/1806.06477 (2018), http://arxiv.org/abs/
1806.06477

13. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic language for privacy-
preserving applications. In: Proc. of the ACM workshop on Language support for
privacy-enhancing technologies (2013)

14. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Proc. of ESORICS (2008)

15. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Proc. of ACM CCS (2007)

16. Camara, C., Peris-Lopez, P., Tapiador, J.E.: Security and privacy issues in im-
plantable medical devices: A comprehensive survey. Journal of biomedical infor-
matics 55, 272–289 (2015)

20 Liu, X. & Yi, X.

17. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

18. Chen, Y., Hu, B., Keogh, E., Batista, G.E.: Dtw-d: time series semi-supervised
learning from a single example. In: Proc. of ACM SIGKDD (2013)

19. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using mul-
tiparty computation. Nature Biotechnology 36(6), 547–551 (2018)

20. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: Proc. of NDSS (2015)

21. European Parliament and of the Council: The General Data Protection Regula-
tion (GDPR). online at http://data.europa.eu/eli/reg/2016/679/2016-05-04

(2016)
22. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric

identification. In: Proc. of NDSS (2011)
23. Keogh, E.: Exact indexing of dynamic time warping. In: Proc. of VLDB (2002)
24. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic protocol selection in se-

cure two-party computations. In: Proc. of ACNS (2014)
25. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of cryptology 15(3)

(2002)
26. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party com-

putation system. In: Proc. of USENIX Security (2004)
27. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-

chine learning. In: Proc. of IEEE S&P (2017)
28. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-

preserving ridge regression on hundreds of millions of records. In: Proc. of IEEE
S&P (2013)

29. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences
under dynamic time warping. In: Proc. of ACM SIGKDD (2012)

30. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

31. Salem, A., Berrang, P., Humbert, M., Backes, M.: Privacy-preserving similar pa-
tient queries for combined biomedical data. Proc. of PETS (2019)

32. Tkachenko, O., Weinert, C., Schneider, T., Hamacher, K.: Large-scale privacy-
preserving statistical computations for distributed genome-wide association stud-
ies. In: Proc. of ACM AsiaCCS (2018)

33. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-
wide, privacy-preserving similar patient query based on private edit distance. In:
Proc. of ACM CCS (2015)

34. Wang, X.: Flexsc. Online at https://github.com/wangxiao1254/FlexSC (2018)
35. Yao, A.C.C.: How to generate and exchange secrets. In: Proc. of IEEE FOCS (1986)
36. Yi, X., Bertino, E., Rao, F.Y., Bouguettaya, A.: Practical privacy-preserving user

profile matching in social networks. In: Proc. of IEEE ICDE (2016)
37. Zheng, W., Popa, R., Gonzalez, J.E., Stoica, I.: Helen: Maliciously secure coopet-

itive learning for linear models. In: Proc. of IEEE S&P (2019)
38. Zheng, Y., Duan, H., Tang, X., Wang, C., Zhou, J.: Denoising in the dark: Privacy-

preserving deep neural network based image denoising. IEEE TDSC (2019)
39. Zheng, Y., Duan, H., Wang, C.: Learning the truth privately and confidently:

Encrypted confidence-aware truth discovery in mobile crowdsensing. IEEE TIFS
13(10), 2475–2489 (2018)

40. Zhu, H., Meng, X., Kollios, G.: Privacy preserving similarity evaluation of time
series data. In: Proc. of EDBT (2014)

Title Suppressed Due to Excessive Length 21

7 Security Analysis
We define the security following the Universally Composable (UC) security frame-
work [17]. Given the protocol Φ, each instance of Φ executed by the parties runs
as subroutine of multiple interactive Turing Machines (ITMs). Given the target
ideal functionality F . Suppose a polynomial-time semi-honest admissible adver-
sary A who can corrupt querier, any subset of hospitals, as well as one of the
two services at most. The input of A is chose arbitrarily by a polynomial-time
algorithm entity environment machine E , who will also collect the outputs from
the parties and A once the execution terminated. In particular, E can exchange
messages with the A at any time throughout the execution. Because A acts un-
der the instructions of E , we call it dummy adversary. Eventually, E outputs a
bit. Let REALΦ,A,E(λ, z) denote the output of E when interacting with A and
parties running Φ on security parameter λ and uniformly chosen input z. Let
IDEALF,S,E(λ, z) denote the output of E when interacting with an ideal world
adversary S and dummy parties running F on λ and z. In the ideal world,
dummy parties send their inputs to F and forward the response to E . We say
Φ UC-realizes F if for any A, there exists S that no E can determine with non-
negligible probability whether it has interacted with Φ under A or with F under
S. That is:

|Pr[REALΦ,A,E(λ, z)] = 1− Pr[IDEALF,S,E(λ, z)] = 1| is negligible. (3)

Furthermore, for a composed protocol ΦG→ρ, suppose a subroutine protocol ρ
(gadgets and atomic operations) of Φ securely evaluates an ideal function G for
A, in the context that Φ can have multiple instances of G operated concurrently.
The UC theorem [17] states that running ΦG→ρ has the same effect of running
Φ if we replace a call to an instance of G with a call to an instance of ρ. If Φ
UC-realizes F in the G-hybrid model, so dose ΦG→ρ.

Observe that both Pruning and Analysis phases are composed with SLB,
SDTW, and SCMP, except if SCMP discloses the rank between threshold and
DTW. We take Analysis as an example to provide our security proof. Given the
ideal functionality Fanalysis defined in Figure 13. Let Fsetup, Fslb, and Fsdtw be
the ideal functionalities for Setup, SLB, and SDTW, respectively. Let Fscmprank
and Fscmp denote the ideal functionalities of the SCMP gadget with and without
leaking the rank.

Theorem 1. Let protocol Φ be the Analysis phase defined in Figure 7. In the
Fsetup,Fslb,Fsdtw, Fscmprank, and Fscmp-hybrid model, Φ UC-realizes Fanalysis
in Figure 13 against a polynomial-time semi-honest admissible adversary.

Proof. Let ΦG→ρ denote the above defined composed protocol Φ. Let A corrupt
Q,H1, ...,Hm−1 and S0, and interact with parties executing ΦG→ρ. We further
define a special adversary D for each subroutine protocol ρ, such that there exists
Sρ guarantees ρ UC-realizes G. We describe a overall simulator S simulates A in
ideal world.
S runs A and exchanges backdoor messages under the instructions of A.

It first forwards the inputs from the corrupted parties’ (randomly picked by

22 Liu, X. & Yi, X.

E) to Fanalysis. It then randomly generates a set of Arithmetic shares in finite
field Z2` on behalf of Hm, sends them to Fanalysis and E . S then plays the
role of S1 and interacts with A using randomly generated shares, excepting
when it receives a call of subroutine protocol. Upon receiving a call of ρ, S
acts as an environment for Sρ. Specifically, S forwards the backdoor messages
received from E to Sρ. Upon receiving a backdoor value from Sρ, S submits
the output to E . Except the subroutine protocol SCMP gadget with leaking
rank, all inputs and outputs of the protocol Φ and subroutine protocols ρ are
produced directly follows the security of the Arithmetic shares and GC. To
handle the revealed rank, S maintains a key-value stored dictionary T to record
the relationship between the rank outputted from Sρ of Fscmprank and the tuple
(distance, threshold). When Fanalysis receives a call of SCMP (leak rank), S
sends to Sρ its randomly selected share of distance and the threshold received
fromA. To keep the consistency, S then checks T to see if it has the key (distance,
threshold). If the key exists, S forwards T [(distance, threshold)] to E . Otherwise,
upon receiving the rank outputted from Sρ, S forwards the rank to E and saves
it as T [(distance, threshold)] = rank. To this end, we argue that the E ’s views
of real and ideal world are identical.

Functionality F : Interact with dummy querier Q, hospitals H1, ..., Hm, services
S0, S1, and an adversary S.

Initiate Upon receiving initiate calls from all parties, sends the message to S,
initializes an dictionary T with self-incremental index k.

Inputs: Upon receiving (Input,m + 1, k, 〈X〉A, 〈U〉A, 〈L〉A, 〈∆〉A) from Q, set
T [k] = 〈X〉A||〈U〉A||〈L〉A||〈∆〉A, or (Input, α, k, 〈Y 〉A) from Hα, set T [k] =
〈Y 〉A, or (Input,m + 2, k,MTs) from S0, S1, sets T [k] = MTs. Sends
(Input, i, k) to S.

Random: Upon receiving (random, k), randomly generate r ∈ Z2` , sets T [k] = r
and sends to all parties and S.

SLB call: Upon receiving (SLB, x, y, z, w), sets T [z] = Fslb(T [x], T [y], T [w]) and
sends (SLB, x, y, z, w) to S0, S1 and S.

SDTW call: Upon receiving (SDTW, x, y, z, w), sets T [z] =
Fsdtw(T [x], T [y], T [w]) and sends (SDTW, x, y, z, w) to S0, S1 and S.

SCMP leak rank call: Upon receiving (SCMP, x, y, z), sets T [z] =
Fscmprank(T [x], T [y]) and reveals (SCMP, x, y, z) to S0, S1 and S.

SCMP call: Upon receiving (SCMP, x, y, z, w), sets T [z] =
Fscmp(T [x], T [y], T [w]) and sends (SCMP, x, y, z, w) to Q and S.

Output: Upon receiving (Output, z), outputs z, T [z] to S and Q.

Fig. 13: Ideal functionality F

