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Privacy-Preserving Collaborative Analytics on
Medical Time Series Data

Xiaoning Liu, Yifeng Zheng, Xun Yi, and Surya Nepal

Abstract—Medical time series data analytics based on dynamic time warping (DTW) greatly benefits modern medical research.
Driven by the distributed nature of medical data, the collaboration of multiple healthcare institutions is usually necessary for a sound
medical conclusion. Among others, a typical use case is disease screening for public health, where multiple healthcare institutions wish
to collaboratively detect over their joint datasets the patients whose medical records have similar features to the given query samples.
However, sharing the medical data faces critical privacy obstacles with the increasingly strict legal regulations on data privacy. In this
paper, we present the design of a novel system enabling privacy-preserving DTW-based analytics on distributed medical time series
datasets. Our system is built from a delicate synergy of techniques from both cryptography and data mining domains, where the key
idea is to leverage observations on the advancements in plaintext DTW analytics (e.g., clustering and pruning) to facilitate the scalable
computation in the ciphertext domain, through our tailored security design. Extensive experiments over real medical time series
datasets demonstrate the promising performance of our system, e.g., our system is able to process a secure DTW query computation
over 15K time series sequences in 34 minutes.

Index Terms—Privacy preservation, time series analytics, dynamic time warping, secure medical application
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1 INTRODUCTION

Medical time series data analytics produces insights to
facilitate the advancement in various medical fields, such as
biomedical research and clinical decision making. Among
others, a typical use case is a disease screening for public
health, where multiple healthcare institutions (e.g., hospi-
tals) and stakeholders (e.g., researchers) wish to jointly de-
tect patients whose medical records have similar features to
given samples. Such an analytic task often needs a matching
algorithm specified for medical time series data to produce
a reliable conclusion. Dynamic time warping (DTW) is a
robust distance metric to match time series data. As long
as two time series sequences display similar shapes, they
will be matched even they are shifted along the time axis.
It has been widely applied for medical time series data
analytics, like identifying Premature Ventricular Contraction
(PVC) with Electrocardiography (ECG) data [2] and Cardiac
Tamponade with Photoplethysmogram (PPG) data [3].

Despite the advantages, the deployment of the DTW-
based medical analytics system in practice is heavily im-
peded due to acute privacy concerns. For most medical
practices, the volume and diversity of data accumulated in a
single hospital usually cannot provide rich disease informa-
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tion due to the natural distribution of medical data [4], [5].
Thus there is a need for the collaboration among multiple
healthcare institutions so as to cater for high quality analyt-
ics and realistic demands. However, unauthorized exposure
of the confidential medical records will seriously compro-
mise the patients’ privacy, and may inflict severe financial
losses as the data are proprietary [6], [7]. Meanwhile, these
institutions cannot ever share or pool together their sensitive
data in the clear because of laws and privacy regulations like
HIPAA in USA [8] and GDPR in Europe [9].

To overcome the privacy hurdle, a plausible solution
that fits in the paradigm of joint medical data analytics is
to utilize generic secure multi-party computation (MPC)
techniques [10], [11], [12], [13]. Unfortunately, the direct
adoptions would suffer from prohibitively high compu-
tation and communication overheads. As such, a recent
trend in the latest studies is to develop application-specific
MPC protocols [4], [14], [15], [16]. However, to our best
knowledge, the design of secure and scalable DTW-based
collaborative analytics remains unexplored.

DTW, as a complicated and iterative mining algorithm, is
not directly amiable with the MPC techniques. It evaluates
the similarity between two time series sequences via a
dynamic programming approach. Specifically, this approach
needs to iteratively work on portions of the sequences (i.e.,
subsequences) until the whole sequences are evaluated. In
each iteration, it needs to compute and aggregate all pair-
wise underlying distances between feature vectors of time
series sequences as the cumulative distances, and acquire
the minimum one as the distance between the current eval-
uated subsequences. Substantial vector-wise operations lead
to high computational complexity that scales quadratically
to the sequence length. Such complicated processing is even
non-trivial to deal with in the plaintext domain. It is thus
quite challenging and requires delicate treatments to design
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a system with full support for the healthcare institutions
to perform scalable DTW-based medical analytics in the
encrypted domain over their joint data.

In light of the above observations, in this paper, we
design the first system tailored for privacy-preserving DTW-
based collaborative analytics on medical time series data.
Our system is built from a delicate synergy of techniques
from both cryptography and data mining domains. Such a
synergy enables a scalable analytics system with provable
security guarantees, addressing the above requirements:
embracing large-scale medical time series data that are nat-
urally decentralized, conducting practical DTW-query com-
putation with guaranteed security, and producing reliable
medical conclusion by securely harnessing joint data.

Our first insight is to design a hybrid pruning strategy
which leverages observations on effective plaintext DTW
preprocessing techniques. With two delicate treatments,
such a strategy can quickly prune off unpromising time se-
ries sequences over the joint dataset, and avoid unnecessary
computation for the complicated DTW distance. Specifically,
the first one is that clustering can be performed by each
hospital beforehand over their local dataset. Computation is
firstly carried out between the query and the cluster centers
so as to filter unpromising clusters (thus unpromising time
series sequences) and produce a candidate set of clusters for
further processing [3], [17]. The second treatment is based
on the observation that instead of computing the DTW
distance directly, a simpler distance could be computed so
as to quickly exclude unpromising sequences that are not
possible to be the best match [18]. Only promising sequences
thus proceed to the complicated DTW computation.

With the above insight as a basis, we then consider how
to achieve a secure and efficient realization of DTW-based
medical analytics. Our main insight is to take advantage
of lightweight cryptography (additive secret sharing) for
efficient data encryption and properly work over the cipher-
texts. To be compatible with the working paradigm of secret
sharing and ease the healthcare institutions and querier
from online participation, we delegate the secure analytics
to two medical service providers which provide services
collaboratively. Through careful examination on the sophis-
ticated computation of DTW, we manage to decompose
it into several atomic functions and propose their secure
and efficient realizations using suitable secure computation
techniques (including secret sharing and garbled circuits
to cater for different network scenarios). With these secure
customized functions, we design a complete protocol for the
secure and scalable DTW-based analytics service.

We implement a system prototype in Java and perform
an extensive evaluation over real-world medical time series
sequences (ECG data) [19] to demonstrate the practical per-
formance. Our result shows that a secure DTW-query com-
putation over 15K ECG sequences, each of which consisting
of 128 feature vectors, can be proceeded in 34 minutes.

The rest of this paper is organized as follows. Section 2
describes some preliminaries. Section 3 gives the system
model and threat model. Section 4 presents the design
overview. Section 5 details the secure distance functions.
Section 6 elaborates on the proposed secure DTW-based
medical analytic protocol. Section 7 formalizes the security
definition and proof. The empirical evaluation is reported in
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Fig. 1. The optimal alignment.

𝑴 𝑿 ,|𝒀|: DTW distance between X and Y.
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Fig. 2. An example of DTW distance between time series X =
(3, 5, 6, 7, 7, 1) and Y = (3, 6, 6, 7, 8, 1, 1).

Section 8, and the related work is investigated in Section 9.
Section 10 concludes the whole paper.

2 BACKGROUND

2.1 Dynamic Time Warping

Dynamic time warping [18] (DTW) is a popular algorithm
which can measure the similarity between time series data
that may vary in time. Intuitively, as shown in Fig.1, the
sequences are warped to match in a nonlinear manner, even
if they shift along the time axis. Let X = (x1, ...,x|X|)
denote a time series sequence of length |X| ∈ N, and
Y = (y1, ...,y|Y |) denote a time series sequence of length
|Y | ∈ N. These sequences consist of a series of dim-
dimensional feature vectors xi,yj for i ∈ [1, |X|] and
j ∈ [1, |Y |]. Note that two sequences are comparable only
if their feature vectors have the same dimension. Further,
we denote a subsequence of X as Xi = (x1, ...,xi). Namely,
Xi is a sequence starting from the first feature vector x1

till the i-th vector xi. Similarly, Yj is a subsequence of
Y from y1 to yj . Without loss of generality, we consider
the sequences of the same length (i.e., |X| = |Y |) with
integer data points. We further denote a dataset contains
n-sequences as Y = {Y 1, ..., Y n}.

Given two time series sequences X and Y as input,
the DTW algorithm outputs a distance-like quantity (called
DTW distance) which measures the similarity of the two
sequences. It is normally evaluated via a dynamic pro-
gramming approach. The rationale is to find the optimal
alignment with minimum cumulative distance between a
slightly larger subsequences each time, until reaching the
end of the sequences.

Algorithm 1 provides the details of the DTW algorithm.
The dist(xi,yj) is the underlying local distance, i.e., Eu-
clidean Distance (ED), between all-pairwise feature vectors.
The D(Xi, Yj) indicates the cumulative distance between
subsequencesXi and Yj . The minimum cumulative distance
is denoted as Dmin , and is declared as the local distance
plus the minimum of its adjacent cumulative distances

maggie
Highlight

maggie
Highlight

maggie
Highlight

maggie
Highlight



3

Algorithm 1 The algorithm of DTW distance
Input: Time-series sequences X = (x1, ...,x|X|), Y =
(y1, ...,y|Y |).
Output: The DTW distance DTW (X,Y ) between X and Y .

1: for i ∈ [1, |X|], j ∈ [1, |Y |] do
2: dist(xi,yj)← (xi − yj)

2.
3: if i == 1&&j == 1 then
4: D(X1, Y1)← dist(x1,y1).
5: else if i == 1 then
6: D(X1, Yj)← dist(x1,yj) +D(X1, Yj−1).
7: else if j == 1 then
8: D(Xi, Y1)← dist(xi,y1) +D(Xi−1, Y1).
9: else

10: Dmin ← min{D(Xi−1, Yj−1), D(Xi−1, Yj),
D(Xi, Yj−1) }.

11: D(Xi, Yj)← dist(xi,yj) +Dmin.
12: end if
13: end for
14: DTW (X,Y )← D(X|X|, Y|Y |)

of the subsequences that one vector smaller than i, j. We
formulate it as follows:
D(Xi, Yj) = dist(xi,yj)

+min{D(Xi−1, Yj−1), D(Xi−1, Yj), D(Xi, Yj−1)}.
(1)

The DTW distance between X and Y is denoted as
DTW (X,Y ), and equivalent to D(X|X|, Y|Y |).

To facilitate understanding of the DTW algorithm, we
provide in Fig. 2 a concrete example for demonstration.
To calculate the DTW distance DTW (X,Y ), we first com-
pute all pairwise local distances dist(xi,yj) and record
them in a matrix Mdist. Then, we iteratively compute
cumulative distances D(Xi, Yj) according to Eq. (1) and
fill in the cumulative distance matrix MD . For example,
when computingD(X2, Y2) between subsequencesX2(3, 5)
and Y2(3, 6), we take the dist(x2,y2) = dist(5, 6) =
1 from the cell Mdist(2, 2). Then we take its adja-
cent cumulative distancesD(X1, Y1), D(X1, Y2), D(X2, Y1).
Afterwards, We calculate D(X2, Y2) = dist(x2,y2) +
min{D(X1, Y1), D(X1, Y2), D(X2, Y1)} = 1 + 0 = 1, and
record the result at the cell MD(2, 2). Eventually, the
DTW (X,Y ) is located at the cell MD(6, 7) (i.e., the up-
right corner of the matrix MD). The optimal alignment is
the path consisting of all minimum cumulative distances,
which are intermediate results, so the optimal path should
be protected in our secure computation.

2.2 Cryptographic Preliminaries
Additive Secret Sharing: Additive secret sharing [10], [12]
can be used as a highly efficient encryption scheme. On
input an `-bit value x, it generates two additive shares
〈x〉A0 , 〈x〉A1 in the ring Z2` uniformly at random as cipher-
texts, such that 〈x〉A0 + 〈x〉A1 ≡ x (mod 2`). Each share 〈x〉Ai
(i ∈ {0, 1}) can then be sent to a particular computing
party denoted by Pi. Given two secret shares 〈x〉A and 〈y〉A,
secure addition and multiplication can be performed at the
two parties P0 and P1 as follows. Unless an explicit claim, all
operations are performed in Z2` . For secure addition, each
party Pi can simply compute 〈x+y〉Ai = 〈x〉Ai +〈y〉Ai locally.
For secure multiplication, the two parties need to have
interaction which relies on the use of secret-shared multi-
plication triple. Suppose a multiplication triple (a1, a2, a3)

is secret-shared between the two parties, where a and b
and random values, and a3 = a1 · a2, multiplication over
secret-shared values proceeds as follows. Each party Pi first
computes 〈e〉Ai = 〈x〉Ai − 〈a1〉Ai and 〈f〉Ai = 〈y〉Ai − 〈a2〉Ai .
Then, each party Pi broadcasts 〈e〉Ai and 〈f〉Ai , and recovers
e and f . Based on this, each party Pi can then compute
〈x ·y〉Ai = i ·e×f + 〈a1〉Ai ×f + 〈a2〉Ai ×e+ 〈a3〉Ai . Note that
the multiplication triples independent of the data inputs can
be generated in an offline phase, via some cryptographic
protocols like correlated oblivious transfer (COT) [10], [20],
or by an independent third party. Therefore, we assume
that multiplication triples are pre-computed and available
for online use in our design.
Boolean Sharing: The Boolean sharing [10], [13] can be
viewed as the additive sharing over Z2. We denote the
Boolean shares of a bit x as JxK0, JxK1. The addition oper-
ation in the additive sharing over Z2 is replaced by XOR
operation (⊕), and the multiplication operation is replaced
by the AND operation (∧). In particular, similar to the multi-
plication, the AND operation is assisted by the precomputed
Boolean AND Triple Ja3Ki = Ja1Ki ∧ Ja2Ki, i ∈ {0, 1}.
Garbled Circuits: The garbled circuit (GC) protocol [11],
[21] allows two parties say P0 and P1 holding inputs x0

and x1, respectively, to jointly evaluate an arbitrary function
f(x0, x1). It ensures that only the function output is revealed
in the end of the protocol, while the confidentiality of their
inputs are protected against each other. Specifically, a party
say P0, called the generator, generates a garbled Boolean
circuit computing f(·, ·), a mapping between the garbled
circuit outputs and the actual bits, and the garbled label
GI(x0) corresponding to his input x0. Then, P0 sends the
garbled circuit and GI(x0) to the other party P1, called the
evaluator. P1 runs with P0 a 1-out-of-2 Oblivious Transfer
(OT 1

2 [22]) to obtain the garbled label GI(x1) associated
with his secret input x1 obliviously. With the garbled circuit
and the garbled labels of inputs, P1 evaluates the garbled
circuit to obtain the garbled circuit output GI(z), based on
which P1 can further learn the cleartext function output z
according to the aforementioned mapping.

3 PROBLEM STATEMENT

3.1 Architecture
Fig. 3 provides an overview of the architecture of our secure
DTW-based medical time series analytic system. At the core,
there are three principals: the medical data owners (aka
“hospitals” for brevity), the querier, and the medical analytics
platform. The hospitals hold datasets of medical time series
sequences and are willing to participate in medical services
like disease screening for public health. In particular, the
service allows the querier, holding a sample indicating a
specific disease, to query over the hospitals’ joint data to
find similar medical time series data. In this paper, the
widely popular DTW algorithm is adopted for the similarity
measurement between two time series sequences. Due to
privacy concerns, neither the hospitals nor querier would
be willing to provide the cleartext medical time series data
in the service. So, the time series data needs to be encrypted
and the service has to run over the ciphertexts.

The multiple hospitals and the querier are bridged by the
medical analytics platform, which facilitates the delivery of
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Fig. 3. System architecture.

the medical service in a secure and scalable manner. It col-
lects encrypted medical time series data from the hospitals
and the query sequence from the querier, and performs the
disease screening. We consider that the platform is jointly
run by two independent medical service providers (S0 and
S1), who collaboratively deliver the secure service. Such a
two-server model has seen an increasing use in different
security applications with problem-specific customization
(e.g., [15], [23], [24]). Our adoption follows the trend and
newly explores the support for secure DTW-based medi-
cal services. In our system, the lightweight additive secret
sharing technique, which is compatible with the two-serve
model, is adopted for fast encryption of time series data on
the hospitals and the querier. Each service provider then
receives a share of the time series data and performs the
secure DTW-based processing. Leveraging our observations
from the advancements in cryptography (multi-party com-
putation) and DTW (clustering and pruning), we develop
a highly customized protocol to support the secure and
scalable computation of DTW.

3.2 Threat Model
The threats in our system mainly come from the engagement
of the medical analytic platform comprised of the two ser-
vice providers. We assume them to be semi-honest and non-
colluding parties. In particular, the two service providers
will faithfully follow our protocol specification, yet they
are interested in inferring the medical time series data of
the hospitals and the querier and will do so independently.
Note that such an assumption simply follows most of the
prior works in the two-server model [15], [23], [24], [25].
We are aware that this also makes sense in practice as the
service providers are business-driven parties and have little
incentives to put their valuable reputation at risk due to be-
having maliciously and colluding with each other [26], [27].
Additional rationale may include the existence of audits and
the fear of legal or financial repercussions. The hospitals and
the querier will honestly follow our protocol to properly
supply the encrypted time series data to the two service
providers for the secure medical analytic service.

In our system, we assume that each hospital establishes
secure connection with the service providers to submit their
data shares in parallel. It is noted that anonymity is fully
orthogonal to our system and not the focus of our system

which targets privacy protection of medical time series data
in DTW-based analytics. Existing orthogonal solutions like
mix-net [28] and Tor [29] could be readily adopted to hide
the hospitals’ IP addresses.

As mentioned before, our system may optionally re-
sort to a third party dedicated to generating multiplication
triples. Such a third party could be any computing service
providers who are interested in providing the service. It
is only for generating the triples and does not engage in
the online protocol for secure DTW-based medical data
analytics. The third party might be semi-honest, who will
correctly generate the triples. Since the triples are data-
independent and generated in an offline phase, no messages
related with actual data for analytics would be accessible to
a corrupted third party. When the third party is considered
to be malicious, it may incorrectly generate the triples. In
such case, the process of triple generation could be deployed
to a trusted execution environment (TEE) [30] enabled on
the third party side, like Intel SGX and ARM TrustZone,
which can guarantee the computation integrity.

4 DESIGN OVERVIEW

At a high level, our protocol for the secure DTW-based med-
ical service is comprised of three phases: Setup, Pruning, and
Analysis. In the Setup phase, each hospital and the querier
pre-processes their medical time series data so as to boost
the scalability of the secure DTW-based medical service, and
they then perform data encryption under additive secret
sharing, from which the produced shares are sent to the
service providers respectively. Specifically, in our protocol
we make use of observations from the plaintext domain [17],
[18] and propose a hybrid pruning strategy to be used in
the Pruning phase and Analysis, which requires some pre-
processing on the local side.

The hybrid pruning strategy is comprised of two delicate
treatments. The first treatment is based on the insight that
we can let each hospital do clustering over their time series
dataset and produces a set of clusters along with their
cluster centers. To match a query against the data from the
hospitals, computation can be first carried out between the
query and the cluster centers to filter unpromising clusters
(thus unpromising time series sequences) and produce a
candidate set of clusters for further processing. We note that
such clustering over the time series data on each hospital
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can be well supported by an algorithm named density peak
clustering [3], [17], which has been shown to be effective
for use in computing DTW over time-series datasets with
arbitrary shapes (unlike R-tree based DBSCAN, and k-
means and its variants).

The second treatment is based on the observation that
before computing the relatively complex DTW distance be-
tween two time series sequences, a simpler distance named
lower bounding distance could be computed so as to quickly
exclude unpromising time series sequences that are not
possible to be the best match [18]. In particular, only those
time series sequences whose lower bounding distances with
the query time series sequence are within a certain threshold
proceed to the computation of the DTW distance. Note that
this is also applicable for doing comparison between the
query times series sequence and cluster centers. To support
such treatment, the querier needs to do some pre-processing
on the query sequence and produce the bounding values for
use in computing the lower bounding distances.

With these two delicate treatments realized properly in
a secure manner, the Pruning phase in our protocol would
produce a candidate set of clusters of encrypted sequences.
In the Analysis phase, the matched (encrypted) sequences
among the candidates are finally located, realizing the se-
cure medical service for disease screening. To realize these
two phases securely, our main insight is to decompose
the computation into atomic functions and build on the
secure computation techniques (additive secret sharing and
garbled circuits) to appropriately realize secure versions
of these atomic operations. In particular, we identify the
needs for the following secure functions in order to build
the secure DTW-based medical analytic protocol: Secure
Squared Euclidean Distance Function (SSED), Secure Lower
Bounding Distance Function (SLB), and Secure DTW Dis-
tance Function (SDTW). We detail the design of these secure
functions in Section 5 and give the complete protocol for
secure DTW-based medical analytics in Section 6.

5 SECURE DISTANCE FUNCTIONS

5.1 Secure Squared Euclidean Distance Function

Suppose that S0 and S1 already obtain the shared vectors of
query X and the candidate sequence Y , and the shares of
their squared values, denoted as 〈x〉A and 〈y〉A, and 〈x2〉A
and 〈y2〉A. They also have a bunch of pre-generated MTs.
S0 and S1 run the function SSED to attain 〈dist〉Ab = 〈x2〉Ab +
〈y2〉Ab − 2(MulA(〈x〉Ab , 〈y〉Ab )), where b ∈ {0, 1}.

5.2 Secure Lower Bounding Distance Function

5.2.1 Overview
As mentioned before, our design makes an observation
in the literature on DTW that a lower bounding distance
can be leveraged to quickly prune off sequences that are
not possible to be the best match ahead of DTW com-
putation. We resort to the widely adopted algorithm of
Keogh et al. [18] to compute the lower bounding distance.
As illustrated in Fig. 4, given a query X , the algorithm
defines an upperbound U and a lowerbound L surround-
ing it. Given a constant number cr, U consists of a set
of vectors ui = max(xi−cr : xi+cr), and L consists of
li = min(xi−cr : xi+cr) that ∀i, ‖ui‖ ≥ ‖xi‖ ≥ ‖li‖.
Given a candidate Y , the lower bounding distance LB is
formulated as follows:

LB(X,Y ) =

√√√√√√ |X|∑
i=1


(yi − ui)

2 if ‖yi‖ > ‖ui‖
(yi − li)

2 if ‖yi‖ < ‖li‖
0 otherwise

(2)

It is provably tight LB(X,Y ) ≤ DTW (X,Y ) and holds lin-
ear time complexity. As the function of Euclidean distance is
monotonic and concave, we omit the square root operation
for the ease of integration with secure computation.

Through careful examination on the LB function, we
note that its computation in the ciphertext domain could be
formulated in this way. Let uy and yl denote the pairwise
EDs between U (or L) and the sequence Y . The computation
can be formulated as: if (‖yi‖ > ‖ui‖) then dist1 ← uy
else dist1 ← 0; and if (‖li‖ > ‖yi‖) then dist2 ← yl else
dist2 ← 0. And the distance is just the sum of dist1 and
dist2. Given the implication that the value of li is always
smaller than the value of ui, such formulation correctly
deduces three conditions (‖yi‖ > ‖ui‖&&‖yi‖ > ‖li‖),
(‖yi‖ < ‖ui‖&&‖yi‖ > ‖li‖), and (‖yi‖ < ‖ui‖&&‖yi‖ <
‖li‖) corresponding to the result that the lower bounding
distance could be uy, 0, or yl, respectively. So, such formu-
lation largely simplifies the computation as two branching
functions running in parallel, facilitating the computation
in encrypted domain. With such formulation in mind, we
then investigate the secure realization of the lower bounding
distance function SLB. Below we give the construction of
two essential cryptographic gadgets: the secure comparison
gadget and the secure branching gadget, and show how to
build SLB from them.

5.2.2 Secure Comparison Gadget
The secure comparison gadget (SCMP) takes as input the
secret shares of two values, determines their rank, and
outputs a bit indicating the comparison result. To support
secure comparison, we note that a common approach is
to use garbled circuits. This can work in our scenario in
that one service provide can play the role of the generator
while the other can play the role of the evaluator. At a high
level, we can build on a Boolean circuit which takes as input
the secret sharings of the two values, reconstructs the two
values, does the comparison, and outputs the comparison
result. However, such garbled circuit-based approach does
incur intensive resource demands in both computation and
communication. It is better suited for the scenario where the
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protocol has to run in high-latency network environments
due to the property of constant communication round.

In this work, in addition to the common garbled circuit
approach, we also investigate an alternative approach that
works in the secret sharing domain and achieves high effi-
ciency in both computation and communication. We make
an observation from the recent work [16] that the secure
comparison problem can be transformed into a simpler bit
extraction problem that can be realized in the secret sharing
domain. The idea is introduced as follows. Let z denote
the subtraction result between two values a1 and a2, i.e.,
z = a1 − a2. Note that the secure subtraction can be easily
done in the secret sharing domain, i.e., 〈z〉A ∈ Z2` =
〈a2〉A − 〈a1〉A. Given a sufficiently large `, the values in
the ring Z2` would be separated into two halves: the lower
half ([0, 2`−1 − 1]) for non-negative values, and the upper
half ([2`−1, 2`− 1]) for negative values. The most-significant
bit (MSB) thus would be 0 for a non-negative value z, and
otherwise 1 for a negative value z. As long as the MSB bit
z` of z is known, the comparison result between a1 and a2

can be obtained. So, the need here for secure comparison is
to extract the MSB of the subtraction result z in the secret
sharing domain. To cater for this need, we employ the bit
extraction protocol in [16], which is able to extract the secret
sharing of the MSB of the subtraction result z, given the
secret sharings of two values a1 and a2. As will be shown
in our experiments, with such new way of doing secure
comparison as an atomic operation in our whole protocol
for secure DTW-based medical analytics, the total online
runtime in the LAN setting is 10× faster than the case when
garbled circuit is used. It is noted that as the bit extraction-
based approach inherits a linear round complexity, it is well
suited for the scenario that a dedicate network is established
in between the two non-colluding service providers.

Based on what has been introduced as far, we now
elaborate on how to obtain realization of the secure com-
parison gadget based on garbled circuits and secret sharing
respectively.
Realization based on Garbled Circuits: Given the service
S1 as the generator and the service S0 as the evaluator, the
SCMPgc(〈a1〉A, 〈a2〉A) gadget proceeds as follows:

1) S1 sends to S0 a pre-built circuit of the compari-
son function f, and the garbled labels of his shares
GI(〈a1〉A1 ), GI(〈a2〉A1 ). The function f switches 〈a1〉A
and 〈a2〉A to a1 and a2 via modular additions, and
obtain the comparison bit z, where z = 0 if a < b and
z = 1 if a1 ≥ a2.

2) If the rank between a and b is required to be hidden, S1

generates the randomness r ∈ Z2` , and sets the output
of the circuits as (z − r) mod 2`.

Realization based on Secret Sharing: Given the two ser-
vice providers, the pre-generated Multiplication triples and
the Boolean AND triples, the gadget SCMPss(〈a1〉A, 〈a2〉A)
proceeds as the follows:

1) Sb initializes the variables for the additive shares
〈t1〉Ab , 〈t2〉Ab ∈ Z2` , and the variables for the Boolean
shares JwkKb, JpkKb, JqkKb, JckKb, JdkKb, JekKb ∈ Z2,
where k ∈ [1, `] and b ∈ {0, 1}.

2) Sb computes 〈z〉Ab = 〈a1〉Ab − 〈a2〉Ab mod 2`.

3) Sb decomposes 〈z〉Ab as the bit string 〈zk〉Ab , where k ∈
[1, l]. S0 then sets JwkK0 = 〈zk〉A0 , JpkK0 = 〈zk〉A0 , and
JqkK0 = 0. Meanwhile, S1 sets JwkK1 = 〈zk〉A1 , JpkK1 =
0, and JqkK1 = 〈zk〉A1 .

4) S0 and S1 compute the following steps to extract the
Most Significant Bit (MSB) of the 〈z〉Ab :

a) S0 and S1 compute JdkKb = JpkK · JqkK in a batch
to reduce the number of rounds of interaction, and
obtain their shares JdkKb, respectively;

b) Sb sets Jc1Kb = Jd1Kb;
c) For k ∈ [2, l − 1], Sb computes JdkKb = JdkKb + b

at local; S0 and S1 jointly compute JekKb = JwkK ·
Jck−1K + b, and JckKb = JekK · JdkK + b with the assist
of the pre-generated Boolean AND Triples;

d) Then, Sb computes to obtain his share of the compar-
ison bit JzlKb = JwlKb + Jcl−1Kb.

5) If the rank is required to be viewed in plaintext value,
then S0 and S1 recover zl.

6) To convert the comparison bit from over Z2 to Z2` , S0

sets 〈t1〉0 = JzlK0, and 〈t2〉A0 = 0, while S1 sets 〈t1〉1 =
0, and 〈t2〉A1 = JzlK1. At the end, S0 and S1 jointly
compute 〈zl〉Ab = 〈t1〉Ab + 〈t2〉Ab − 2 · 〈t1〉A · 〈t2〉A to
obtain their shares of comparison bit, respectively.

Remark: To further reduce the latency due to the interac-
tions for multiplications in the above secret sharing-based
protocol, our implementation delicately carries out a part
of the computation in a batch, and manages to reduce the
round complexity from 3` to 2`. Such acceleration is not
trivial when considering our secure computation, as the data
volume is large, and the ` is demanded to be large enough.

5.2.3 Secure Branching Gadget
For each feature vector of the candidate sequence as y, the
upperbound u, and the lowerbound as l, given the pairwise
secure squared Euclidean distances uy, yl between them, a
secure branching gadget (SBranch) needs to be conducted.
The functionality of the SBranch gadget is to choose one of
uy, yl, or 0 based on the rank of the variables y, u, l. A
vanilla solution is to compare y and u (or l) and output
a comparison bit indicating their rank, so that the service
providers can select the result from dist1 and dist2. Yet,
revealing the rank of every feature vector in Y and {U,L}
endows an adversary the ability to deduce the range of
query X , and tighten the estimation via adaptive testings
with a series of evenly incremented values of Y . Thus, it
is desired to devise an oblivious branching scheme, which
solves two branching functions in parallel, and assigns the
shares of distance to S0 and S1 without leaking the rank.
We give two secure realizations based on garbled circuits
and secret sharing respectively.
Realization based on Garbled Circuits: Given the service
S1 as the generator and the service S0 as the evaluator. Let
m1,m2 denote the conditions, and c1, c2 denote the deci-
sions. The SBranchgc(〈m1〉A, 〈m2〉A, 〈c1〉A, 〈c2〉A) proceeds
as the follows:

1) S0 generates ω ∈R Z2` .
2) S1 sends to S0 a pre-built circuit of the

above introduced branching function f, and
GI(〈m1〉A1 ), GI(〈m2〉A1 ), GI(〈c1〉A1 ), GI(〈c2〉A1 ). The
function f performs the following steps:
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Algorithm 2 Secure Lower Bounding Distance Function

1: function SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Y 〉A, 〈Y 2〉A)
2: Sb initializes 〈LB〉Ab for b ∈ {0, 1}.
3: for i ∈ [1, |X|] do
4: Sb initializes 〈dist1〉Ab , 〈dist2〉Ab , 〈uy〉Ab and 〈yl〉Ab .
5: S0 and S1 run to get 〈uy〉Ab ← SSED(〈ui〉A, 〈yi〉A,
〈y2
i 〉A, 〈u2

i 〉A ).
6: S0 and S1 run to get 〈yl〉Ab ← SSED(〈li〉A, 〈yi〉A,
〈y2
i 〉A, 〈l2i 〉A ).

7: S0 and S1 run to get 〈dist1〉Ab ←
SBranch(〈ui〉A, 〈yi〉A, 〈uy〉A, 0).

8: S0 and S1 run to get 〈dist2〉Ab ←
SBranch(〈yi〉A, 〈li〉A, 〈yl〉A, 0).

9: Sb sets 〈dist〉Ab = 〈dist1〉Ab + 〈dist2〉Ab , and 〈LB〉Ab =
〈LB〉Ab + 〈dist〉Ab .

10: end for
11: Sb gets 〈LB〉Ab .
12: end function

a) switches 〈m1〉A, 〈m2〉A, 〈c1〉A, 〈c2〉A to m1, m2, c1,
c2 via modular additions;

b) compares m1 and m2, and sets a bit b that b = 0 if
‖m1‖ < ‖m2‖ and b = 1 if ‖m1‖ ≥ ‖m2‖;

c) sets the result z, where if b = 0, z = (c1−ω) mod 2`;
and if b = 1, z = 〈dist〉A0 = (c2 − ω) mod 2`.

3) After S0 obtains the garbled labels of his shares via OT,
S0 evaluates the circuit to get GI(z).

4) S0 decodes GI(z) to obtain his share of the branching
decision as 〈dist〉A0 = z mod 2`, and S1 sets his share
as 〈dist〉A1 = ω.

Realization based on Secret Sharing: Given the two ser-
vice providers, the pre-generated Beaver’s Triples, and
the SCMPss gadget, the SBranchss(〈m1〉A, 〈m2〉A, 〈c1〉A,
〈c2〉A) proceeds as the follows:

1) S0 and S1 jointly execute the SCMPss gadget 〈z〉Ab ←
SCMPss(〈m1〉A, 〈m2〉A) to compare the conditions
m1,m2, and obtain their shares of the comparison bit
〈z〉Ab , where 〈z〉Ab ∈ Z2` and b ∈ {0, 1}.

2) Based on 〈z〉Ab , one of the decisions c1, c2 is assigned as
the resulting distance. Both service providers calculate
their shares of the distance obliviously.

3) That is, Sb computes 〈p〉Ab = b− 〈z〉Ab .
4) At the end, S0 and S1 jointly compute 〈dist〉Ab = 〈p〉A ·
〈c1〉A + 〈z〉A · 〈c2〉A .

5.2.4 Secure Lower Bounding Distance Algorithm

Given the cryptographic gadgets SCMP and SBranch, the
SLB function is described in Algorithm 12. On input a set
of shares of all feature vectors in Y , U , and L, and the
shares of their squared values, the SLB function outputs the
secure LB distance between query and candidate sequence.
It invokes the SSED function to securely calculate the
squared Euclidean distance between feature vectors ui,yi
and li,yi. And it invokes the SBranch gadget to choose
correct and well-masked distance dist1 (or dist2) based on
the rank of feature vectors. Here the SBranch gadget can be
instantiated by the previously introduced two realizations,
i.e., SBranchgc and SBranchss. Finally, it sums all obtained
dist1 and dist2 as the result LB.

5.3 Secure DTW Distance Function

The secure DTW distance function (SDTW) is the core
component in our secure DTW-based analytic system. It
utilizes the dynamic programming approach to produce the
minimum cumulative distance Dmin between the query X
and each candidate sequence Y in an iterative fashion. To
assist the find minimum calculation, we now propose the
secure find minimum gadget.

5.3.1 Secure Find Minimum Gadget
The secure find minimum gadget (SFindMin) takes as input
three given shares, determines the minimum value among
them, and generates new shares of the minimum value as
the output. With the re-generation of shares, the index of
the minimum cumulative distance Dmin in every iteration
is hidden. This operation cannot be neglected. Otherwise,
the optimal warping path of X and Y will be revealed, and
further allows the adversary to estimate X or Y , depending
on which party is compromised.
Realization based on Garbled Circuits: Given
S1 as the generator and S0 as the evaluator, the
SFindMingc(〈a1〉A, 〈a2〉A, 〈a3〉A) gadget proceeds as
the follows:

1) S1 generates the randomness r ∈ Z2` . Then, S1

sends to S0 a pre-built circuit of the function f, and
GI(〈a1〉A1 ), GI(〈a2〉A1 ), GI(〈a3〉A1 ) andGI(r). The func-
tion f performs the following steps:

a) switches 〈a1〉A, 〈a2〉A and 〈a3〉A to a1, a2 and a3 via
modular additions;

b) compares a1, a2 and a3 to get the minimum as Dmin;
c) generates new shares of Dmin via modular subtrac-

tion, i.e., z = (Dmin − r) mod 2`.
2) S0 obtains GI(〈a1〉A0 ), GI(〈a2〉A0 ), GI(〈a3〉A0 ) via OT,

and evaluates the circuit to obtain GI(z).
3) At the end, S0 decodes GI(z) and sets his share

as 〈Dmin〉A0 = z. Accordingly, S1 sets his share as
〈Dmin〉A1 = r.

Realization based on Secret Sharing: Given the
two service providers, the SBranchss gadget, the
SFindMinss(〈a1〉A, 〈a2〉A, 〈a3〉A) gadget proceeds the fol-
lowing steps:

1) S0 and S1 jointly compute 〈D1〉Ab ←
SBranchss(〈a1〉A, 〈a2〉A, 〈a1〉A, 〈a2〉A) to get a smaller
one of 〈a1〉A, 〈a2〉A, where b ∈ {0, 1}.

2) Afterwards, S0 and S1 jointly compute 〈D2〉Ab ←
SBranch(〈D1〉A, 〈c〉A, 〈D1〉A, 〈a3〉A) to get a smaller
one from 〈c〉A and the previous result.

3) Finally, Sb set his share of the minimum value as
〈Dmin〉Ab = 〈D2〉Ab , respectively.

5.3.2 Secure DTW Distance Algorithm
Given the SFindMin gadget, Algorithm 3 describes the
SDTW function. It takes as input the shares of all feature
vectors and their squared values of the candidate sequence
Y and the query X , and outputs to the service providers the
shares of the DTW distance 〈DTW 〉A between them. A com-
mon practice for DTW is to apply a global constraint [31] to
avoid pathological warping [18], where a relatively small
portion of one sequence would not be warped to map a
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Algorithm 3 Secure DTW Function

1: function SDTW(〈X〉A, 〈X2〉A, 〈Y 〉A, 〈Y 2〉A)
2: Sb initializes 〈DTW 〉Ab and two arrays costb and
costprev,b with numeric infinity (INF), that each has (2cr+1)
numbers of cells for b ∈ {0, 1}.

3: for i ∈ [0, |X| − 1] do
4: Sb initializes k ← max(0, cr − i).
5: for j ∈ [ max(0, i− cr), min(|X| − 1, i+ cr)] do
6: Sb initializes 〈a1〉Ab , 〈a2〉Ab , 〈a3〉Ab with INF,
〈dist〉Ab , and 〈D〉Ab .

7: If i = 0 && j = 0, S0 and S1 run to get 〈dist〉Ab ←
SSED(〈x0〉A, 〈y0〉A, 〈x2

0〉A, 〈y2
0〉A). Then, Sb stores his share

at costb[k]. Sb sets k ++, and continues to next iteration.
8: If j ≥ 1 && k ≥ 1, Sb sets 〈a2〉Ab ← costb[k − 1];

else INF.
9: If i ≥ 1 && k + 1 ≤ 2 ∗ cr, Sb sets 〈a1〉Ab ←
costperv,b[k + 1]; else INF.

10: If i ≥ 1 && j ≥ 1, Sb sets 〈a3〉Ab ← costprev,b[k];
else INF.

11: S0 and S1 run to get 〈D〉Ab ← SSED(〈xi〉A, 〈yj〉A,
〈x2
i 〉A, 〈y2

j 〉A) + SFindMin (〈a1〉A, 〈a2〉A, 〈a3〉A). Then, Sb
stores his share at costb[k], and then sets k ++.

12: end for
13: Sb copies costb to costprev,b, and cleans costb.
14: end for
15: Sb gets 〈DTW 〉Ab ← costprev,b[cr].
16: end function

considerably large portion of another. It introduces a cr-
width sliding window so that only the elements within the
window can be compared. We follow the common practice,
and securely realize the global constraint in our SDTW
function. As suggested [18], [32], the parameter cr is a
constant and independent on the data, we thus assume it
is a hyper parameter known by both service providers.

We describe the way to optimize the memory consump-
tion when calculating DTW distance. Recall, DTW between
X and Y is normally realized by maintaining an |X|-by-|X|
matrix MD filled with cumulative distances D(Xi, Yj) for
i, j ∈ [1, |X|]. We observe that the calculation of D(Xi, Yj)
is only related to its adjacent cumulative distances, i.e.,
D(Xi−1, Yj−1), D(Xi−1, Yj), D(Xi, Yj−1). Thereby, rather
than maintaining the whole matrix in memory, recording
the D(Xi, {Yj}|Y |1 ) and D(Xi−1, {Yj}|Y |1 ) is enough. To do
so, we can use two 2cr+1-length arrays cost and costprev to
store the i-th column mi,∗ (i.e. current column) and (i−1)-th
column mi−1,∗ (i.e. previous column) of MD . For the entire
SDTW calculation, they act as two vertical bars moving
from left to right and bottom-up one cell each iteration.
Thus, the quadratic storage consumption can be saved to
linear with the length of sequence. With this observation in
mind, we briefly sketch how to realize the SDTW function.

For simplicity of representation and without loss of
generality, we take the calculation of D(Xi, Yj) as an
example. Assume that costprev is already filled with
D(Xi−1, {Yj}i+cr−1

i−cr−1), i.e., a replica of the cost in previ-
ous iteration. And the cost is awaiting to be filled with
D(Xi, {Yj}i+cri−cr) in the current iteration. Suppose that cell
cost[k] stores D(Xi, Yj), where k ∈ [max(0, cr− i), 2cr+1].
When filling it, the SDTW function invokes the SSED func-
tion to calculate dist(xi,yj). Afterwards, we try to obtain
Dmin among its adjacent cumulative distances that are
already stored at cost[k− 1], costprev[k+ 1] and costprev[k].

Precedently, we need to examine if the awaiting computed
D(Xi, Yj) is located at the edge of the sliding window,
i.e., at costb[0] or costb[2cr + 1]. If not, the SDTW function
invokes the SFindMin gadget to determine Dmin. Note that,
the SFindMin gadget here can be realized by the aforemen-
tioned SFindMingc or SFindMinss to suit different runtime
environments. Otherwise, it compares the existences of the
three adjacent cumulative distances to find the minimum.
At the end, we add dist(xi,yj) and Dmin together as
D(Xi, Yj), and store into cell cost[k]. The function calculates
the above procedures repeatedly until reaching X|X|, Y|Y |.
Then, D(X|X|, Y|Y |) is the DTW distance between X and Y .
Following the above methodology, we provide the details of
secure realization of the SDTW function in Algorithm 3.

6 PROTOCOL FOR SECURE DTW-BASED MEDI-
CAL ANALYTICS

Fig. 5 is a high-level illustration of the online phases, i.e., the
Pruning phase and the analytic phase. It shows the workflow
in each phase, and the functionality dependence between
the distance functions and the cryptographic gadgets they
rely on. In the following section, we present the details of
the setup phase, and the two online phases, and summarize
the whole protocol Φ in Fig. 6.

6.1 Setup Phase
During the Setup phase, each party prepares the data locally
that can be used in online execution. Suppose that m hos-
pitals {H1, ...,Hm} join the computation. Each hospital Hα

holds a dataset Yα consisting of n sequences {Y 1, ..., Y n},
where α ∈ [1,m]. During preprocessing, each hospital pre-
partitions the local dataset into k clusters C1 = {C1, ..., Ck}
based on the Density Peak clustering [17] as mentioned
before. And the clusters are represented by the cluster
centers {C1, ...,Ck}. Given the pre-generated upperbound
U , lowerbound L, and the matching threshold ∆ held by
the querier Q. We assume X and Y are equal length, i.e.,
both consist of |X| numbers of dim-dimensional vectors.

Once the Setup phase is launched, the querier Q and
all hospitals produce additive shares of vectors and their
squared values of all the sequences they hold, and deploy
the corresponding shares to the service providers S0 and S1

for coordinate processing. To facilitate the multiplications
on secret shares, S0 and S1 interactively produce a bunch
of dim-dimensional MTs (〈a3〉A, 〈a1〉A, 〈a2〉A) with the
relationship a3 = a1×a2. If the proposed gadgets (SBranch,
SFindMin and SCMP) are realized based on Secret Sharing,
both service providers produce the Boolean AND triples.
Note that one triple should be used only for a single multi-
plication or Boolean AND operation, and be discarded once
it is used. If we adopt the GC-based realizations, S1 as the
generator, generates garbled circuits for the three gadgets.

6.2 Secure Pruning Phase
The Pruning phase is used to eliminate the unpromising
clusters whose centers are not similar to the query, thus
to reduce the volume of data submitted to the sequential
comparison in the Analysis phase. To execute in parallel, S0

and S1 invoke m instances, respectively. A pair of instances
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Fig. 5. Online phases overview.

Protocol Φ:
Setup(X,U,L, {C1, ...,Cm},∆):

1: S0 and S1 interactively generate M sets of MTs.
2: Q locally generates the shares 〈∆〉A, 〈X〉A, 〈X2〉A, 〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, and distributes them to S0 and S1.
3: Each Hα locally generates the shares 〈Y 〉A and 〈Y 2〉A of Y ∈ Yα, 〈Cβ〉A and 〈(Cβ)2〉A of Cβ , and dummy identifiers
rβ ∈ {r1, ..., rk} randomly for each cluster, where β ∈ [1, k]. Then, each Hα independently distributes all shares to S0

and S1 for coordinate processing.
Pruning(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈X〉A, 〈X2〉A, 〈Cβ〉A, 〈(Cβ)2〉A, 〈∆〉A):

1: Sb initializes his array ArrCα,b,where b ∈ {0, 1}.
2: for each cluster center Cβ ∈ Cα in each Hα do
3: S0 and S1 run to get 〈LBC〉Ab ← SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Cβ〉A, 〈(Cβ)2〉A).
4: If SCMP(〈LBC〉A, 〈∆〉A) == 0, S0 and S1 run to get 〈DTWC〉Ab ← SDTW(〈X〉A, 〈X2〉A, 〈Cβ〉A, 〈(Cβ)2〉A). Else,

continue.
5: If SCMP(〈DTWC〉A, 〈∆〉A) == 0, Sb adds the identifier rβ of cluster Cβ to his array ArrCα,b. Else, continue.
6: end for
7: Sb finds each sequence 〈Ȳ 〉Ab in all candidate clusters C̄β according to the identifiers stored in his ArrCα,b.

Analysis(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈X〉A, 〈X2〉A, 〈Ȳ 〉A, 〈Ȳ 2〉A, 〈∆〉A):
1: Sb initializes his array Arrα,b, where b ∈ {0, 1}.
2: for each sequence Ȳ in all candidate clusters C̄β do
3: S0 and S1 run to get 〈LB〉Ab ← SLB(〈U〉A, 〈U2〉A, 〈L〉A, 〈L2〉A, 〈Ȳ 〉A, 〈Ȳ 2〉A).
4: If SCMP(〈LB〉A, 〈∆〉A) == 0, S0 and S1 run to get 〈DTW 〉Ab ← SDTW(〈X〉A, 〈X2〉A, 〈Ȳ 〉A, 〈Ȳ 2〉A). Else, continue.
5: S0 and S1 run to get SCMP(〈LB〉A, 〈∆〉A) == 0. Then, Sb stores the identifier of 〈Ȳ 〉Ab to Arrα,b, respectively.
6: end for
7: Sb sends Arrα,b to Q.
8: Q obtains the unique identifiers of similar sequences, and can communicate with hospitals to obtain the sequences.

Fig. 6. Secure DTW-based medical time series analytic protocol.

dedicates to the computation for each hospital. For simplic-
ity of explanation and without loss of generality, we take as
an example the computation between one pair of instances.

At the very beginning, S0 initializes a dynamic array
ArrCα which will store the dummy identifier rβ of the
promising clusters Cβ named by hospitals. Such a dummy
identifier is used to prevent S0 from knowing the real
identity of Cβ . Given the prepared shares of vectors and
their squared values of each center Cβ , U and L. S0 and
S1 collectively execute the SLB function to obtain his share
of the secure LB distance between query and each center,
denoted as 〈LBC〉Ab , where b ∈ {0, 1}. Afterwards, S0 and
S1 execute the SCMP gadget to compare 〈LBC〉A with the
threshold 〈∆〉A. If it is larger than the threshold, the current
processed cluster is directly ruled out.

For the centers whose secure LB distances are smaller
than the threshold, the computation proceeds to the secure
DTW calculation. S0 and S1 execute the SDTW function
to obtain the shares of the secure DTW distance between Cβ

andX , denoted as 〈DTWC〉Ab . They then check if 〈DTWC〉A
is less than 〈∆〉A via the SCMP gadget. If so, all sequences in
Cβ are eligible to submit to the Analysis phase for sequential
scan, and its dummy identifier rβ is stored in ArrCα . After

examining all centers, S0 grabs all candidate sequences in
the promising clusters C̄β based on the dummy identifiers.

6.3 Secure DTW-based Analysis Phase

During the Analysis phase, S0 and S1 evaluate every can-
didate sequence Ȳ , i.e., the results of the previous phase.
First, S0 and S1 initialize dynamic arrays Arrα,b, which
will store the shares of the resulting secure DTW distances,
where b ∈ {0, 1}. Then, S0 and S1 execute the SLB function
to obtain shares of secure LB distance between X and each
Ȳ , denoted as 〈LB〉Ab . They then test if 〈LB〉Ab is within
the threshold via the SCMP gadget. If so, they proceed
the SDTW function to obtain the shares of secure DTW
distance 〈DTW 〉Ab between X and Ȳ . Service providers
then compare 〈DTW 〉A and 〈∆〉A via the SCMP gadget
to get their shares of the smaller one, and store to Arrα,b.
After evaluating all candidate sequences, S0 and S1 send
the result Arrα,b to Q. Finally, the querier recovers and
obtains the unique identifier of similar sequences. It can then
communication with the hospitals to acquire the sequences.
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TABLE 1
Number of Calls of Atomic Functions

Pruning phase Analysis phase
#SBranch 2|X|mk 2|X|µmn
#SFindMin θsdtwσmk θsdtwµσmn
#SCMP (1 + σ)mk (1 + σ)µmn
#SSED (θsdtwσ + 2|X|)mk (θsdtwσ + 2|X|)µmn
#SLB mk µmk
#SDTW σmk µσmn

TABLE 2
Number of Beaver’s Triples in Atomic Functions

(GC-based) SSED SLB SDTW
#MTs 1 2|X| |X|(2cr + 1)− cr2 − cr

(sharing-based) SCMP SBranch SFindMin
#MTs 1 3 6

# AND Triples 3|X| − 4 3|X| − 4 6|X| − 8

6.4 Remark of Complexity

Complexity of online phases: Define the sequence length
|X|, the parameter cr of the global constraint, the pruning
ratio σ of the SLB function in the Analysis phase, and the
overall pruning ratio µ of the Pruning phase. Given the
number of datasets m, the total number of sequences n
that each dataset contains, and the number of clusters k that
each dataset is grouped into. Launching one time of the SLB
function invokes 2|X| times of the SSED function and the
SBranch gadget, respectively. While one call of the SDTW
function executes |X| · (2cr + 1)− cr · (cr + 1) (denoted as
θsdtw) calls of the SSED function and the SFindMin gadget,
respectively. The number of calls of the distance functions
and the cryptographic gadgets are benchmarked in Table 1.
Workload in offline phase: The workload of the Setup
phase focuses on generating Beaver’s Triples (i.e., Multi-
plication Triples and Boolean AND Triples) as summarized
in Table 2. Although the service providers can generate
the Triples at offline, this workload directly reflects on the
overall resource consumption. Given the total number of
centers and sequences are m · (k + n) and cr = 0.05|X|.
For GC-based realizations, the overall number of MTs is
estimated as M = d(0.0975|X|2 +2.95|X|)e ·m · (n+k). For
sharing-based realizations, the service providers can pre-
generate d(0.6975|X|2 + 6.95|X|) · me · (n + k) MTs and
d(0.5975|X|2 + 11.75|X| − 16)·em · (n + k) AND Triples.
However, our protocol consumes far less than the above
estimated amount. Because our pruning strategy excludes
a considerable amount of the unpromising sequences (at
least 40% confirmed by our experiment). As the Triples are
independent on the time series data, the uncirculated one
can supply for the future computations.

7 SECURITY ANALYSIS

We now analyze the security of the proposed protocol for se-
cure DTW-based medical analytics. Recall that our protocol
Φ involves multiple parties possessed their own datasets,
where any analytic task between a single hospital and the
querier can be executed in parallel by a pair of instances
from the service providers S0 and S1. To define the security
for this multi-instance and concurrent-execution protocol Φ,
we follow the Universally Composable (UC) security frame-
work [33]. Under a general protocol composition operation
(universal composition), the security of Φ is preserved.

Given the engaged parties a querier Q, hospitals
H1, ...,Hm and two non-colluding service providers S0, S1.
Consider a semi-honest A who can corrupt only one of the
two non-colluding service providers at most. We call such
an A as an admissible adversary. This setting captures the
property that S0 and S1 are non colluded. That is, if S0

is corrupted by A, S1 behaves honestly; vice versa. The
protocol realization based on GC and secret sharing follows
directly the security of GC [11], and additive sharing [12]
and Boolean sharing [13], respectively. All medical se-
quences, Multiplication Triples MTs, Boolean AND Triples,
and intermediate results are well protected as randomly
generated shares in the ring Z2` and the ring Z2. Given
above, we argue that Φ UC-realizes an ideal functionality F
against A. The security captures the property that the only
pertinent data learned by any corrupted party is his inputs
and outputs from the protocol yet nothing about the data of
the remaining honest party.

To prove the above argument, we present the details of
the security definition under UC framework. Given the pro-
tocol Φ, each instance of Φ executed by the parties runs as
subroutine of multiple interactive Turing Machines. Given
the target ideal functionality F . Suppose a polynomial-time
semi-honest admissible adversary A who can corrupt one of
the two service providers at most. The input ofA is chose ar-
bitrarily by a polynomial-time algorithm entity environment
machine E , who will also collect the outputs from the parties
and A once the execution is terminated. In particular, E can
exchange messages with the A at any time throughout the
execution. Because A acts under the instructions of E , we
call it dummy adversary. Eventually, E outputs a bit. Let
REALΦ,A,E(λ, z) denote the output of E when interacting
with A and parties running Φ on security parameter λ and
uniformly chosen input z. Let IDEALF,S,E(λ, z) denote the
output of E when interacting with an ideal world adversary
S and dummy parties running F on λ and z. In the ideal
world, dummy parties send their inputs to F and forward
the response to E . We say Φ UC-realizes F if for any A,
there exists S that no E can determine with non-negligible
probability whether it has interacted with Φ underA or with
F under S . That the following Eq 3 is negligible:

|Pr[REALΦ,A,E(λ, z) = 1]− Pr[IDEALF,S,E(λ, z) = 1]|.
(3)

Furthermore, for a composed protocol ΦG→ρ, suppose a
subroutine protocol ρ (gadgets and atomic operations) of
Φ securely evaluates an ideal functionality G for A, in the
context that Φ can have multiple instances of G operated
concurrently. The UC theorem [33] states that running ΦG→ρ

has the same effect of running Φ if we replace a call to an
instance of G with a call to an instance of ρ. If Φ UC-realizes
F in the G-hybrid model, so dose ΦG→ρ.

Observe that both Pruning and Analysis phases are
composed with SLB, SDTW, and SCMP, except if SCMP
discloses the rank between threshold and DTW. We take
Analysis as an example to provide our security proof. Given
the ideal functionality Fanalysis defined in Fig. 7. Let Fsetup,
Fslb, and Fsdtw be the ideal functionalities for Setup, SLB,
and SDTW, respectively. Let Fscmprank and Fscmp denote
the ideal functionalities of the SCMP gadget with and
without leaking the rank. Note that the above mentioned
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Functionality F : Interact with dummy querier Q, hospitals H1, ..., Hm, service providers S0, S1, and an adversary S.
Initiate: Upon receiving initiate calls from all parties, sends the message to S, initializes a dictionary T with self-incremental

index k.
Inputs: Upon receiving (Input,m + 1, k, 〈X〉A, 〈U〉A, 〈L〉A, 〈∆〉A) from Q, sets T [k] = 〈X〉A||〈U〉A||〈L〉A||〈∆〉A; or (Input, α,

k, 〈Y 〉A) from Hα, sets T [k] = 〈Y 〉A; or (Input,m+ 2, k,MTs) from S0, S1, sets T [k] = MTs. Sends (Input, i, k) to S.
Random: Upon receiving (random, k), randomly generate r ∈ Z2` , sets T [k] = r and sends to all parties and S.
SLB call: Upon receiving (SLB, x, y, z, w), sets T [z] = Fslb(T [x], T [y], T [w]) and sends (SLB, x, y, z, w) to S0, S1,S.
SDTW call: Upon receiving (SDTW, x, y, z, w), sets T [z] = Fsdtw(T [x], T [y], T [w]) and sends (SDTW, x, y, z, w) to S0, S1,S.
SCMP leak rank call: Upon receiving (SCMP, x, y, z), sets T [z] = Fscmprank(T [x], T [y]) and reveals (SCMP, x, y, z) to

S0, S1,S.
SCMP call Upon receiving (SCMP, x, y, z, w), sets T [z] = Fscmp(T [x], T [y], T [w]) and sends (SCMP, x, y, z, w) to Q and S.
Output Upon receiving (Output, z), outputs z, T [z] to S and Q.

Fig. 7. Ideal functionality F .

ideal functionalities can be implemented by both realiza-
tions based on GC and secret sharing, given equivalent
functionalities they have achieved.

Theorem 1. Let protocol Φ be the Analysis phase defined in
Fig. 6. In theFsetup,Fslb,Fsdtw,Fscmprank, andFscmp-hybrid
model, Φ UC-realizes Fanalysis in Fig. 7 against a polynomial-
time semi-honest admissible adversary.

Proof. Let ΦG→ρ denote the above defined composed proto-
col Φ. Let A corrupt Q,H1, ...,Hm−1 and S0, and interact
with parties executing ΦG→ρ. We further define a special
adversary D for each subroutine protocol ρ, such that there
exists Sρ guarantees ρ UC-realizes G. We describe a simula-
tor S for A in the ideal world.
S runs A and exchanges backdoor messages under the

instructions of A. It first forwards the inputs from the
corrupted parties’ (randomly picked by E) to Fanalysis. It
then randomly generates a set of additive shares in finite
field Z2` on behalf of Hm, sends them to Fanalysis and
E . S then plays the role of S1 and interacts with A using
randomly generated shares, excepting when it receives a
call of subroutine protocol. Upon receiving a call of ρ, S
acts as an environment for Sρ. Specifically, S forwards the
backdoor messages received from E to Sρ. Upon receiving a
backdoor value from Sρ, S submits the output to E . Except
the subroutine protocol SCMP gadget with leaking rank,
all inputs and outputs of the protocol Φ and subroutine
protocols ρ are produced directly follows the security of
the additive shares and GC. To handle the revealed rank,
S maintains a key-value stored dictionary T to record the
relationship between the rank output from Sρ of Fscmprank
and the tuple (distance, threshold). When Fanalysis receives
a call of SCMP (leak rank), S sends to Sρ its randomly
selected share of distance and the threshold received from
A. To keep the consistency, S checks T to see if it has
the key (distance, threshold). If the key exists, S forwards
T [(distance, threshold)] to E . Otherwise, upon receiving the
rank produced from Sρ, S forwards the rank to E and saves
it as T [(distance, threshold)] = rank. As the end, we argue
that the E ’s views of real and ideal world are identical.

8 EXPERIMENTS

8.1 Setup
The prototype of our secure DTW-based medical analytic
protocol is implemented in Java. For our GC-based realiza-
tions, we regard the FlexSC [34] as a code base. FlexSC is

a Java-based MPC toolkit that offers half-AND [35] opti-
mizations of GC and OT extension [20]. Towards Beaver’s
Triples generation, we extend its OT implementation to the
COT. For the additive Sharing, we set the ring as 231 to fit
in the Java primitive type int instead of BigInteger so as to
accelerate the modular additions and multiplications.

Our experiment is conducted on the Amazon EC2
c5.4xlarge instances running Ubuntu 16.04 LTS. For demon-
stration purpose and without loss of generality, we launch
four instances to perform the two non-collude service
providers, a hospital and a querier. Each instance is
equipped with a 3.0GHz Intel Xeon Platinum CPU with 16
vCPUs, 32GB of RAM, and 10Gpbs virtual NIC. It is noted
that the performance of secure DTW processing is depen-
dent on the actual size of time series datasets aggregated at
the service providers, regardless of the number of hospitals.

Our experiments are based on a real medical time se-
ries dataset comprised of 15K ECG sequences which are
derived from two UCR time series dataset archives, i.e., the
UCR Time Series Classification Archive [36] and the UCR
Suite [32]. In particular, the dataset used by us contains real-
world 256Hz ECG sequences. Each sequence is comprised of
128 single-dimensional vectors (or features), which indicate
the heart rates in a time period. They are normally used to
evaluate the data mining problems on medical time series
data [2]. In practice, they might be used to identify heart
diseases, such as the Premature Ventricular Contraction (an
abnormal heartbeats symptom). We store the dataset to
the Redis database as key-value pairs, both in the hospital
side and the service providers side during analytics. To
be compatible with the secure computation primitives, we
further normalize and quantize each data point to integer
by scaling up 105 times. For the lower bounding distance
and DTW, we employ the global constraint as a system
parameter. Following the setting in [2], we set its value to
cr = 0.05 ∗ 128 = 7.

To improve runtime performance, we catch the interme-
diate results in Redis database. We observe that the heap size
of the Java Virtual Machine (JVM) is insufficient to store our
storage-consumed intermediate results, such as the all-pair
distance matrix used for DP clustering. In detail, consider
the 64-bit JVM. By default all variables and intermediate
results are stored in the heap of JVM at runtime. Although
the heap size is 264 bits in theoretical, it actually depends on
how operating system allocates, because no system so far
has 264-bit RAM. In fact, we observe that the maximum JVM
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TABLE 3
Performance of Cryptographic Gadgets

GC based realization Sharing based realization
Gadgets Time (ms) Comm. (KB) # AND gates Time (ms) Comm. (KB) # AND Triples # MTs
SCMP 4.65 22.29 541 1.95 0.38 89 1

SCMP (leak rank) 3.95 17.63 350 1.85 0.35 89 0
SBranch 6.11 31.62 859 2.18 0.44 89 3
SFindMin 5.53 28.2 764 4.60 0.88 178 6
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Fig. 8. Unit time for GC
based gadgets.
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heap size in our Ubuntu OS is about 7.6GB, much smaller
than the 32GB RAM. As a result, we treat the in-memory
Redis database (v3.0.6) as software glue linking up sub-
modules of our prototype to catch the intermediate results.

In addition, we generate a bunch of Multiplication
Triples and Boolean AND Triples offline. We store them
in files that 300 triples for each. Once required, the service
providers can randomly choose files and retrieve the triples
upon the demand of computation, and then delete the files
to ensure the randomization of triples Besides, we slightly
extend FlexSC toolkit to allow a single call of the SLB
function to be executed by multiple threads.

It is noted that the assessment of data quality in machine
learning is a research topic orthogonal to this paper. Our
focus is on providing a privacy-preserving solution to a data
mining problem, i.e., DTW-query computation on medical
time series data. Our secure system builds on intact plaintext
DTW processing techniques including the DTW distance,
the Keogh’s Lowering Bounding distance [18], and the Den-
sity Peak clustering [3], [17]. The correctness of our solution
is ensured by the underlying cryptographic primitives.

8.2 Evaluation

8.2.1 Cryptographic Gadgets
Table 3 benchmarks the unit latencies and bandwidths of
the gadgets on average by 104 executions in LAN. For the
GC-based realizations, the reported times exclude the offline
circuits generation times, and we also report the number of
AND gates for unit execution. While for the sharing-based
realizations, we report the numbers of Beaver’s Triples
consumed in each call. The prominent takeaway is that,
the unit bandwidth costs of the sharing-based realizations
are 30-70× reduced than the equivalent GC-based ones. We
take the bandwidth cost of executing 106 times the SBranch
gadget for 5K sequences as an example. The sharing-based
realization saves the bandwidth from 30 GB to 0.3 GB
compared with the GC-based one. Such a saving reduces
the overall resources demand of medical service providers
and results in financial benefits.

On the other hand, the GC-based realizations are more
suitable for the high-latency WAN network due to its
constant-round property. For demonstration purpose, we

simulate a WAN network with an average 50ms delay per
communication.The result shows that the GC-based real-
izations are faster than the sharing-based realizations. For
example the SCMP gadget, the unit latency of the GC-based
realization is 0.85s and sharing-based realization is 9.55s.

Moreover, we leverage the empirical cumulative distri-
bution function (CDF) to depict the distributions of the unit
running times for each gadget in LAN. Fig. 8 illustrates the
distribution of unit times on executing 1K gadgets realized
based on GC. Statistically, most of the four gadgets can be
proceeded within 0.2 seconds. Fig. 9 displays the empirical
CDF of unit times for the sharing-based realizations. It
shows that the SCMP gadget (with and without revealing
the rank), the SBranch gadget, and the SFindMin gadget can
be executed within 2.5ms, 5ms, and 15ms, respectively.

8.2.2 Distance Functions
Table 4 benchmarks the performances of executing indi-
vidual distance functions SSED, SLB, and SDTW, with an
average of 104 executions in LAN. For the SSED function,
both time and bandwidth are lightweight. For the SLB func-
tion, it invokes the SBranch gadget to perform vector-wise
secure branching. The sharing-based SLB achieves around
100× saving on the bandwidth consumption. Likewise, the
SDTW function invokes the SFindMin gadget. The sharing-
based SDTW introduces by about 20× speed up in LAN
and 45× bandwidth saving than the GC-based SDTW.

Besides, we depict the empirical CDF to illustrate the
unit runtime distributions over 5K executions of the above
distance functions. Fig. 10 shows that, in most cases, the unit
time for the SSED function is less than 1.5ms. Fig. 11 exhibits
that, 4s is sufficient to proceed a single call of GC-based
SLB function, and 2s is enough to perform the sharing-based
realization (i.e., SLBII ). Fig. 12 illustrates the distribution
of unit time of the SDTW function. For the GC-based one,
it requires at least 200s, while retrenching to less than 20s
when employing the sharing-based one (i.e., SDTWII ).

8.2.3 Online Phases
We turn our focus on the performance in each phase of our
protocol. The overall running times of online phases (i.e.,
the Pruning phase + the Analysis phase) are evaluated on 5K,
10K, and 15K sequences. Each set of sequences is randomly
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TABLE 4
Performance of Atomic Distance Functions

GC based realization Sharing based realization
Functions Time Comm. Time Comm.
SSED - - 1.88 ms 0.03 KB
SLB 0.84 s 11.13 MB 1.61 s 0.11 MB

SDTW 216.76 s 74.95 MB 9.97 s 1.63 MB

5K 10K 15K
Number of sequences

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e(
s)

Pruning_GC
Analysis_GC
Pruning_sharing
Analysis_sharing

Fig. 13. Overall runtime for online phases.

chosen from our dataset and already grouped in 10 clusters.
For demonstration purpose, we choose at random one of the
secure DTW distance 22834481 as our threshold. As a result,
there are 8 sequences out of 5K data, 59 out of 10K data, and
87 out of 15K data similar to the query.

Fig. 13 depicts, along with the growth of dataset in chunk
of 5K sequences, the time of Pruning phase remains steady
for both realizations, since its workload relies upon the
number of clusters. Whereas for the time of Analysis phase,
the time growths sharply yet does not form a linear scale.
Because its overhead depends on two perspectives: (1) the
sequential scan with all candidate sequences submitted to
Analysis phase via the SLB function, and (2) the compar-
ison based on the quadratic time SDTW function with the
above results. Given the result, the sharing-based realization
achieves up to 90% saving in LAN compared with the GC-
based realization. In particular, the time for analyzing 15K
sequences is reduced from 5.6 hours to 34 minutes.

To verify the effectiveness of the Pruning phase, we
define the pruning ratio as the number of excluded se-
quences divides the size of dataset (i.e., 15K sequences). We
randomly choose a group of thresholds as t1: 10511173, t2:
18848334, and t3: 22834481 for demonstration purpose. We
report that the ratios 96.3%, 93.2%, 91.0% for t1, 71.6% 69.5%
68.2% for t2, and 50.0% 43.9% 41.5% for t3 when the dataset
are partitioned into 10, 20 and 30 clusters. The results show
that the pruning ratios decrease with the raising number of
clusters and values of threshold, yet diminishing at least 6K
sequences from the sequential scan in the Analysis phase.

8.2.4 Setup Phase
The workload of the querier is lightweight. For 1K queries,
it takes 51.5ms to generate U , L, and 38.5ms to generate
shares. The result confirms that our protocol is amiable
to the querier who does not have strong computational
power. The workload of the hospital in the offline phases
is dominated by the one-time DP clustering [17]. It takes

5467.6s, 55558.2s, and 421895.4s to classify 5K, 10K, and 15K
sequences into 10 clusters. The runtime scales quadratically
with the growth amount of sequences, due to the intensive
workload of calculating all-pair distances. But the Setup
phase does not aggravate the workload of the hospital:
the shares of 15K sequences can be produced within 1s.
The workload of two service providers in Setup phase is
triple generation. Generating one triple consumes 6.1ms and
30.4KB on average by 105 executions. To save the time and
bandwidth costs, one may resort to an independent third
party dedicated to preparing the triples [16], [37].

9 RELATED WORKS

DTW-based Time Series Data Analytics: The DTW tech-
nique has been pervasively used in data mining domains
related with time series data, including biomedicine [3],
image/speech processing [38], and astronomy. The DTW
distance is firstly proposed by Berndt et al. [39]. Since then,
the research efforts in the literature have been devoted to
improving the efficiency and effectiveness. To accelerate
the DTW-query computation, Keogh et al. [18] propose an
indexing method based on the lower bounding distance
to prune off unpromising time series sequence prior to
the DTW distance calculation. Atop this index design, a
suite of optimization techniques [2] has been proposed to
support search over trillions of streaming time series data.
In the meantime, approximated DTWs [38], [40], [41] are
also proposed to speed up the search. Constraint methods
on DTW can be adopted to avoid pathological mapping of
two time series, such as Sakoe-Chiba band [31]. To sup-
port multi-dimensional time series sequences, the work [42]
generalizes the conventional DTW to enhance the accuracy.
Beyond search, DTW can also be applied to time series
classification [43] and clustering [3]. Despite the benefits,
these works do not consider privacy protection.
Privacy-Preserving Analytics over Medical Data: Another
related line of research is privacy-preserving medical data
analytics for different applications. In [23], Zheng et al.
design a privacy-preserving medical image denoising sys-
tem based on Deep Neural Network (NN). Their system
produces high-quality content for image-centric applica-
tions (e.g., analyzing Chest X-ray images), while enabling
a privacy assured remote diagnosing. In [7], Barni et al.
design a privacy-preserving ECG data classification system
via linear branching program and NN. Some works [44],
[45], [46] design secure similarity search schemes over out-
sourced and encrypted medical databases. There are also
some studies on privacy-preserving human genomic data
analytics. The work [47] securely computes Euclidean dis-
tance and Pearson correlation coefficient distance on human
genome sequences, yet the adopted distance metrics are
error-prone when any deletions and additions happen on
the genome sequences. The privacy-preserving DNA se-
quence evaluation systems proposed in [48] and [49] are
based on the robust Edit Distance (ED). Similar to DTW, the
ED is relatively complicated and evaluated via dynamic pro-
gramming. These systems rely on a public-available human
genomic reference dataset in cleartext, so as to approximate
and transform the secure ED computation to a simpler
problem. Other secure applications of genomics are also
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addressed like secure genome-wide association studies [50].
In [51], Zhu et al. propose a homomorphic encryption based
protocol that allows a client and a server, each holding a
time series sequence in the clear, to compute and reveal
the DTW distance to both them. Their scenario is quite
different from the far more challenging one we target in
this paper, i.e., privacy-preserving collaborative analytics
over distributed and encrypted time series data. To our best
knowledge, no prior work has addressed the challenges as
we did in this paper.
Privacy-Preserving Machine Learning: The area of privacy-
preserving machine learning has rapidly emerged in recent
years. Some systems have been proposed based on the
generic secure computation techniques for different ma-
chine learning problems, such as privacy-preserving ridge-
regression [52], privacy-preserving association rule min-
ing [53], and privacy-preserving NN training and inference
system [25]. Due to the prohibitively high performance over-
head introduced by the generic MPC techniques, the current
trend is to leverage problem specifics and develop tailored
protocols. For instance, the works [14], [54], [55] design
cryptographic protocols customized for privacy-preserving
neural network inference. These works aim to enable a client
holding a private input and a server holding a proprietary
neural network model to run a secure protocol, so that the
client only learns the inference result while the server learns
nothing. Also, the client-server setting considered in these
works is relatively simpler than a decentralized analytic
setting. In other independent work, Zheng et al. [16] propose
a privacy-preserving decision tree inference system with
tailored and lightweight cryptography techniques in the
two-server model. The systems Quotient [15] and Leia [56]
are designed to support oblivious NN inference via a co-
design of machine learning and cryptography techniques
in the two-server model. Inspired by the trend in privacy-
preserving machine learning, we explore and present new
endeavors for a secure data mining problem. That is, we
design the first system tailored for privacy-preserving DTW-
based collaborative analytics on distributed medical time
series data, where we make use of observations from both
data mining and cryptography domains to accomplish a
scalable and secure design.
Difference from Conference Version: Portions of the work
presented in this paper have been presented in [1]. We have
revised the preliminary work [1] a lot and made substantial
new contributions and improvements, which are summa-
rized below. Firstly, we have proposed new efficient secret
sharing-based designs in Section 5 for the secure distance
functions and cryptographic gadgets essential for privacy-
preserving DTW-based medical time series data analytics.
Such new designs lead to the provision of a new alternative
protocol that endows our system with the flexibility and
capability to cater for different realistic service demands in
practice. Secondly, we have justified the security guarantees
of our designs in Section 7 with formal security proofs.
In particular, we have defined the ideal functionality for
our target service of privacy-preserving DTW-based medical
data analytics. Based on the UC security framework, we
have formally proved that our protocol UC-realizes the
ideal functionality in a hybrid model. Thirdly, we have
significantly improved the experiments, especially with new

extensive evaluation on the new secure secret sharing-based
designs. The results show that in the LAN environment
the new realization of our security design substantially
improves upon the one in [1] using garbled circuits by up
to 10× in online runtime. Finally, we have substantially
polished the presentation of the whole paper to reflect our
new contributions and latest understanding on the topic, as
well as improve the clarity.

10 CONCLUSION

In this paper, we present the first system design of privacy-
preserving DTW-based analytics on distributed medical
time series data, which allows geographically separated
healthcare institutions to collaborate in a DTW-based medi-
cal analytics service like disease screening for public health.
Our design is built from a synergy of techniques from both
cryptography and data mining domains, where we uniquely
bridge effective hybrid pruning techniques with efficient se-
cure computation techniques to develop a tailored solution.
Formal security analysis is provided to justify the security
guarantees of our design. Our comprehensive evaluation
demonstrates the practically affordable performance of our
system for secure DTW-based medical analytics.

ACKNOWLEDGEMENT

This work was supported in part by the ARC Linkage
Project LP160101766: Privacy-preserving cloud data mining-
as-a-service.

REFERENCES

[1] X. Liu and X. Yi, “Privacy-preserving collaborative medical time
series analysis based on dynamic time warping,” in Proc. of ES-
ORICS. Springer, 2019.

[2] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions
of time series subsequences under dynamic time warping,” in
Proc. of ACM SIGKDD, 2012.

[3] N. Begum, L. Ulanova, J. Wang, and E. Keogh, “Accelerating
dynamic time warping clustering with a novel admissible pruning
strategy,” in Proc. of ACM SIGKDD, 2015.

[4] W. Zheng, R. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Mali-
ciously secure coopetitive learning for linear models,” in Proc. of
IEEE S&P, 2019.

[5] C. Wang, B. Zhang, K. Ren, J. M. Roveda, C. W. Chen, and Z. Xu,
“A privacy-aware cloud-assisted healthcare monitoring system via
compressive sensing,” in Proc. of IEEE INFOCOM, 2014.

[6] Y. Lindell and B. Pinkas, “Privacy preserving data mining.” Journal
of cryptology, vol. 15, no. 3, 2002.

[7] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider,
“Privacy-preserving ecg classification with branching programs
and neural networks,” IEEE Trans. on Information Forensics and
Security, 2011.

[8] 104th United States Congress, “Health Insurance Portability and
Accountability Act of 1996 (HIPPA),” online at https://www.hhs.
gov/hipaa/index.html, 1996.

[9] European Parliament and of the Council, “The General Data
Protection Regulation (GDPR),” online at http://data.europa.eu/
eli/reg/2016/679/2016-05-04, 2016.

[10] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in Proc.
of NDSS, 2015.

[11] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. of
IEEE FOCS, 1986.

[12] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private
collaborative forecasting and benchmarking,” in Proc. of WPES,
2004.



15

[13] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game or a completeness theorem for protocols with honest
majority,” in Proc. of ACM STOC, 1987.

[14] “Delphi: A cryptographic inference service for neural networks,”
in Proc. of 29th USENIX Security, 2020.

[15] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: two-party secure neural network training and predic-
tion,” in Proc. of ACM CCS, 2019.

[16] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
outsourcing of machine learning classification,” in Proc. of ES-
ORICS. Springer, 2019.

[17] A. Rodriguez and A. Laio, “Clustering by fast search and find of
density peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[18] E. Keogh, “Exact indexing of dynamic time warping,” in Proc. of
VLDB, 2002.

[19] “Physiobank atm,” Online at http://physionet.org/cgi-bin/atm/
ATM.

[20] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More effi-
cient oblivious transfer and extensions for faster secure computa-
tion,” in Proc. of ACM CCS, 2013.

[21] Y. Lindell and B. Pinkas, “A proof of security of yao’s protocol for
two-party computation,” Journal of Cryptology, vol. 22, no. 2, pp.
161–188, 2009.

[22] M. O. Rabin, “How to exchange secrets with oblivious transfer,”
Harvard University, Tech. Rep. TR-81, 1981.

[23] Y. Zheng, H. Duan, X. Tang, C. Wang, and J. Zhou, “Denoising
in the dark: Privacy-preserving deep neural network based image
denoising,” IEEE Trans. on Dependable and Secure Computing, 2019.

[24] W. Chen and R. A. Popa, “Metal: A metadata-hiding file sharing
system,” in Proc. of NDSS, 2020.

[25] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in Proc. of IEEE S&P, 2017.

[26] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating pri-
vate recommendations efficiently using homomorphic encryption
and data packing,” IEEE Trans. Information Forensics and Security,
vol. 7, no. 3, pp. 1053–1066, 2012.

[27] Y. Zheng, H. Duan, and C. Wang, “Learning the truth privately
and confidently: Encrypted confidence-aware truth discovery in
mobile crowdsensing,” IEEE Trans. on Information Forensics and
Security, vol. 13, no. 10, pp. 2475–2489, 2018.

[28] J. Brickell and V. Shmatikov, “Efficient anonymity-preserving data
collection,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2006, pp. 76–85.

[29] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The second-
generation onion router,” in Usenix Security, 2004, pp. 303–320.
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