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Abstract—Similarity-oriented services serve as a foundation
in a wide range of data analytic applications such as machine
learning, target advertising, and real-time decisions. Both in-
dustry and academia strive for efficient and scalable similarity
discovery and querying techniques to handle massive, complex
data records in the real world. In addition to performance, data
security and privacy become an indispensable criterion in the
quality of service due to progressively increased data breaches.
To address this serious concern, in this paper, we propose
and implement “EncSIM”, an encrypted and scalable similarity
search service. The architecture of EncSIM enables parallel query
processing over distributed, encrypted data records. To reduce
client overhead, EncSIM resorts to a variant of the state-of-the-
art similarity search algorithm, called all-pairs locality-sensitive
hashing (LSH). We describe a novel encrypted index construction
for EncSIM based on searchable encryption to guarantee the
security of service while preserving performance benefits of all-
pairs LSH. Moreover, EncSIM supports data record addition
with a strong security notion. Intensive evaluations on a cluster of
Redis demonstrate low client cost, linear scalability, and satisfied
query performance of EncSIM.

I. INTRODUCTION

Similarity-oriented solutions are recognized as one of the
key components in advanced data analytics such as machine
learning, target advertising, and real-time decisions [1], [2]. To
handle a large volume of data records, continuous efforts from
industry and academia are made to improve the efficiency and
scalability of similarity clustering and querying services [3],
[4]. Apart from performance factors, data privacy protection
is also considered as a crucial factor regarding the quality
of service, because data leaks become a norm nowadays [5].
Data managed in either public storage services or private data
centers faces serious threats of being stolen or abused [6].

Applying client-side encryption ensures the end-to-end con-
fidentiality of data records, but it limits the functions for search
over the ciphertext. To preserve the functionality, researchers
intend to promote solutions in two primary directions. The
first is to design cryptographic primitives to enable specific
query functions with guaranteed security such as searchable
encryption for keyword search [7], [8]. The second direction is
to develop encrypted database systems by using suitable cryp-
tographic primitives. Exemplary systems include CryptDB [6],
BlindSeer [9], and EncKV [10]. Unfortunately, none of the
above solutions supports similarity search.

To bridge the gap, Kuzu et al. propose the first practical se-
cure similarity search scheme over encrypted high-dimensional

data records [11]. They start from a well-known algorithm
for similarity search, aka locality-sensitive hashing (LSH) [1],
which returns records within a distance of a given query in
sublinear time with constant probability. Then by viewing LSH
hashes as keywords, they propose a searchable encryption
scheme to enable similarity search in the encrypted domain.
Theoretically, any SSE schemes can support similarity search
if LSH is applied. However, such treatment only does not
deliver a secure, scalable and quality similarity search service
for very large datasets. There still exist three challenges.

First, how to design a distributed architecture for similarity
search over encrypted high-dimensional data records remains
unknown. Such an architecture for large amounts of encrypted
data is desired to preserve recognized advantages of plain-
text distributed analytics systems such as parallel computing
ability and linear scalability. Besides, existing cryptographic
primitives do not consider the implementation and deployment
in production systems. How to design primitives that can be
applied in practice with minimized development efforts are
also demanded to be explored.

Second, although LSH boosts query performance compared
to brute-force distance computation or traditional spatial in-
dexing techniques [12], it usually demands a large number of
hash tables to produce a high-quality result set, e.g., easily
reaching a few hundreds in a million-scale dataset [3]. This
fact could introduce considerable user overhead when search-
able encryption is adopted. As for guaranteed data privacy,
the LSH index needs to be generated and encrypted at a
trustworthy client before uploading to the server, and hundreds
of LSH hashes should also be computed and encrypted at the
client for the server to perform secure queries or updates. The
above overhead may result in high setup cost and long query
latency which are considered as potential bottlenecks to affect
service quality especially for large datasets.

Third, one known issue of existing secure similarity search
schemes [13], [14] is that adding a new data record would
possibly reveal partial information of this record. That is
because the encrypted LSH hashes for the server to perform
addition can be overlapped with the encrypted hashes of other
records if they are queried before. Such leakage allows the
server to immediately learn the similarity between the new
record and the records already in the dataset. Therefore, the
proposed similarity service should enhance the protection of
newly added records.



Contributions: We introduce “EncSIM”, i.e., a secure and
scalable similarity search service for massive encrypted high-
dimensional data records. First of all, EncSIM supports dis-
tributed similarity search over encrypted data records. We de-
sign a modern architecture for EncSIM that enables encrypted
data partitioning, parallel encrypted query processing as well
as easy deployment of off-the-shelf searchable encryption
techniques.

In order to reduce the user overhead, EncSIM resorts
to a fast LSH algorithm named “all-pairs LSH” [3], [15],
which leverages the idea that LSH functions are reusable. The
resulting design reduces the setup time on index building, and
greatly decreases encrypted query generation and bandwidth
cost. Although the saving is considerable as the number of
LSH functions is typically large, directly applying All-pairs
LSH may introduce additional leakage from LSH query token
reuse (see analysis in Section V-B). To address this issue, we
propose a novel technique to randomize the query tokens to
achieve comparable security strength of prior schemes. The
server only learns the minimized yet necessary information
within the query procedure. In the meanwhile, all performance
benefits of All-pairs LSH are preserved.

EncSIM also supports secure data addition. To prevent
the server from learning the similarity between new records
and existing records, we carefully integrate EncSIM’s service
with the latest searchable encryption technique that achieves
forward security [16], and present a secure addition proto-
col without affecting the correctness and efficiency of the
proposed search protocol. As a result, the updates on the
encrypted index during data addition will not indicate any
useful information about new data records.

The salient features of EncSIM are summarized as follows:

• It enables a secure, fast and scalable similarity search
service that can facilitate distributed servers to process
encrypted similarity queries in parallel.

• It minimizes the user overhead for outsourced secure
similarity search. The setup and query token generation
cost is greatly reduced compared to existing designs.

• It provides provable security strength such that the con-
tents of queries and results are strongly protected. The in-
formation learned from the service is precisely captured.

• It supports efficient and secure data addition. No partial
information of newly added records will be learned.

The prototype of EncSIM is deployed on a Redis cluster.
Compared to a basic approach, EncSIM reduces the setup cost
by 15%, and brings a saving of 25× on token generation time
and a saving of 11× on token bandwidth consumption. The
latency of typical queries ranges from 190ms to 500ms, and the
throughput reaches 2.6× 104 of retrieved records per second.
Organization: Section II discusses the related work. Sec-
tion III describes the preliminaries and notations throughout
this paper. After that, Section IV introduces EncSIM’s service
architecture and threat model in general. We elaborate on
EncSIM’s design in section V and present the security analysis
in Section VI. Finally, we report the implementation and

evaluation in section VII and conclude in Section VIII.

II. RELATED WORKS

Searchable symmetric encryption: As we aim to enable
efficient and scalable services over large encrypted datasets,
we are interested in the symmetric key based encrypted
search techniques with sublinear time complexity, also known
as searchable symmetric encryption (SSE). The first SSE
schemes [7], [17] using specific encrypted indexes achieve
that the time of keyword search only scales in the number of
matched records. Thereafter, secure data dynamic operations
are considered in [18]. The recent focus on SSE moves to
improve I/O efficiency [19] and support boolean queries [8].
Similarity search on encrypted data: Our design is closely
related to secure similarity search schemes on encrypted high-
dimensional data records. Under this direction, Lu et al. design
an encrypted visual vocabulary tree that groups encrypted
similar images together [20]. Given a query image, it will be
classified to certain visual words. By using order-preserving
encryption, encrypted values on each dimension of the query
and matched images can be compared to measure the Jaccard
similarity. After that, researchers observe that secure similarity
search can be solved in a more practical way if LSH is
adopted, such that one-way transformed LSH hashes can be
used to locate encrypted similar records [11]. In [11], Kuzu et
al. propose an encrypted bitmap index derived from the LSH
inverted index which is the first to enable sublinear secure
similarity search. But this scheme is not scalable, because its
index size is quadratic in the number of data records, and
the data dynamic operations are not supported. Later, Yuan
et al. [14] devise a high-performance encrypted LSH index
to improve the space and query efficiency. Despite improved
performance, their design trades accuracy for efficiency and
might not be applicable to more general applications. In the
meantime, Boldyreva and Chenette formalize the security no-
tion of LSH based searchable encryption schemes and identify
open problems on their security [13].

Compared to the schemes above, EncSIM proposed as a
comprehensive service has three major contributions. First,
it presents a distributed architecture for secure similarity
search. This architecture supports encrypted data partition and
preserves the capability of incremental scalability and parallel
computing in distributed analytic systems. Second, it improves
the service quality of secure similarity search services by
reducing the setup time and decreasing the query overhead
at the user side. Third, it supports secure record addition with
strong guarantees.

III. PRELIMINARIES AND NOTATIONS

A. Preliminaries

Symmetric encryption: A symmetric encryption scheme
contains a tuple of three polynomial-time algorithms
(KGen,Enc,Dec). The key generation algorithm KGen is
a probabilistic algorithm that takes a security parameter λ
to return a secret key k; The encryption algorithm Enc is
a probabilistic algorithm that takes a key k and a message



m ∈ {0, 1}∗ to return a ciphertext c ∈ {0, 1}∗; The decryption
algorithm Dec is a deterministic algorithm that takes k and c
to return m if c is produced under key k.

Pseudo-random function: Define a family of pseudo-random
functions F : {0, 1}λ × {0, 1}m → {0, 1}n, if for all
probabilistic polynomial-time distinguishers A, |Pr[AF (k,·) =

1|k $← {0, 1}λ]− Pr[Ag = 1|g $← {Func[m,n]}]| < negl(λ),
where negl(λ) is a negligible function in λ.

Basic LSH: Locality sensitive hashing [1] constructs a ran-
domized data structure to enable approximate but fast sim-
ilarity search in high-dimensional space. This data structure
utilizes a hash function family H that maps the input data
records to a universe U with the property that similar records
have hash collisions with a much higher probability than those
that are far apart. A general definition of LSH is given below:

Definition 1 (Locality-sensitive Hashing). Let S be the domain
of data records and D be the distance function. Given distance
R1, R2, where R1 < R2, and probability p1, p2, where
p1 > p2, a hashing function family H = {h : S → U}
is (R1, R2, p1, p2)-locality-sensitive if for any si, sj ∈ S:
if dist(si, sj) ≤ R1 then P [h(si) = h(sj)] ≥ p1; if
dist(si, sj) > R2 then P [h(si) = h(sj)] ≤ p2.

The basic LSH algorithm concatenates multiple hash func-
tions h ∈ H to enlarge the gap between the high probability
p1 and the low probability p2 [1]. Specifically, one composite
LSH function family is defined as G = {g : S → Um} such
that g(s) = (h1(s), · · · , hm(s)), where hi ∈ H. To achieve
fine accuracy, the algorithm independently and randomly picks
L composite LSH functions from G. As a result, each data
record is partitioned into L buckets {g1(s), · · · , gL(s)}.

Given a query record q, the basic LSH algorithm computes
{g1(q), . . . , gL(q)} and collects candidate data records from
pre-built buckets via hash matches. Afterwards, the algorithm
evaluates the distance from each candidate record to query q
to report the near neighbors within a distance R or rank the
candidates if required.

All-pairs LSH: In practice, the number of LSH functions can
achieve several hundred [3], [21] for high-quality similarity
search services where nearly all the records within the distance
radius are returned. To speed up the LSH index construction
time and query time, all-pairs LSH known as a fast LSH
variant is proposed and implemented in [3], [15]. Basically,
it reuses some of the LSH functions to reduce the time of
computing LSH hashes. This algorithm generates m partial
functions, where each is concatenated by d/2 hash functions
hi ∈ H, i.e., u(s) = {h1(s), . . . , hd/2(s)}, and d is even.
Given all {u1, . . . , um}, each composite LSH function gj ∈
{g1, · · · , gL} takes a pair of hashes (ux, uy) and concatenates
them into a d-dimensional hash, where 1 ≤ x < y ≤ L.
Consequently, the above combinations produce L =

(
m
2

)
= m(m−1)/2 hashes, where m ≈

√
L. Compared to the basic

LSH algorithm, all-pairs LSH saves the LSH hash computation
time from O(dL) to O(d

√
L).

Users

Tokens

Coordinator Servers

Data	Owner

Candidates
Database

Fig. 1: The service architecture of EncSIM

B. Notations and Functions

This subsection defines the notations used throughout of our
paper. We define a hash table H that consists of key-value
pairs defined as 〈l, v〉. Given two binary strings X and Y ,
X||Y represents their concatenation and X⊕Y stands for their
exclusive disjunction. Our secure similarity search focuses
on a high-dimensional data collection. Given a plaintext z-
dimensional record s, s∗ is the ciphertext of s. Then the data
set S is a record set {s1, . . . , sn}, and the encrypted dataset
S∗ is defined as {s∗1, . . . , s∗n}. We consider that the identifier
id of a record s is also its physical address.

EncSIM’s service includes the following primary functions:
• (I,S∗)← Setup(K,S, N): takes as input client’s private

key K, a high-dimensional dataset S and the partition
number n, and outputs an encrypted index I in N
partitions and an encrypted dataset S∗.

• t← SearchToken(K, sq, lsh): takes as input K, client’s
query record sq and the parameter set of all-pairs LSH
lsh, and outputs a set of search tokens t.

• R ← SimSearch(t, I,S∗): takes as input K, I and S∗,
and outputs a set of similar candidates R.

• tad ← AddToken(K, sad, lsh): takes as input K, a new
record sad and lsh, and outputs a set of add tokens tad.

• (I ′,S∗′) ← Add(K, sad, tad, I,S∗): takes as input K,
sad, tad, I and S∗, and outputs the updated index I ′ and
dataset S∗

′
.

IV. SYSTEM MODEL

A. Overview

This section overviews the service architecture of EncSIM
and its threat assumptions. Figure 1 illustrates a typical out-
sourced service scenario that EncSIM targets. A data owner
deploys a high-dimensional dataset to the cloud, and delegates
the cloud to provide users similarity search services for big
data analytics. To ensure the confidentiality of data records,
EncSIM runs the Setup function at the data owner side to
encrypt the entire dataset before outsourcing. In terms of the



number of servers leased from the cloud, Setup partitions
the encrypted data records and builds an encrypted searchable
index for each partition (i.e., server).

After the index and data are deployed, the users authorized
by the data owner are allowed to use the secure similarity
search service provided by EncSIM. To start using the service,
the user client runs the SearchToken function to generate
encrypted search tokens derived from the LSH hashes of a
query record. Then it sends the tokens to a coordinator, which
broadcasts the tokens to the servers. After receiving the tokens,
each server runs the SimSearch function in parallel. This
function uses tokens to process the encrypted index, obtain
the ids of candidate records, and return encrypted candidates.
At last, the user client decrypts and computes their distances
to the query. To add a new record, the data owner encrypts
it and runs the AddToken function to generate encrypted add
tokens derived from the LSH hashes of this record. Then it
sends the tokens and the encrypted file to the target server
in terms of the partition. After that, the server runs the Add
function to update the encrypted index and dataset.

To speed up encrypted similarity query processing, the
architecture of EncSIM follows the existing high performance
similarity query engines designed in the plaintext domain [3].
Encrypted records are partitioned by standard distributed data
partition algorithms, and the corresponding encrypted indexes
are co-located. As a result, all the servers process the query
tokens at the same time. Throughout the service, EncSIM
provides strong protections on the contents of query and data
records. Neither of them is known by the servers.

B. Threat Model

In EncSIM, we consider two types of adversaries. The first
is defined as external adversaries. They can be outside hackers,
who may observe the communication between users and some
of the servers, and obtain static snapshots of their encrypted
indexes and data records [10], [22]. The second is defined
as internal adversaries. They can be employees of the cloud
provider without authorized access on the contents of data
records. In addition to the information that external adversaries
can learn, they are able to constantly monitor and access the
memory and disks of all the servers [10]. Currently, EncSIM
does not handle the adversaries who maliciously inject, modify
or delete the data records. We note that complementary work
(aka. verifiable searchable encryption [23]) would be effective
to address the above threat.

V. THE DESIGN OF ENCSIM

In this section, we will first introduce a generic service
architecture for secure similarity search over distributed and
encrypted high-dimensional data records. Based on this service
architecture, we introduce a basic construction based on nat-
ural integration of all-pairs LSH and searchable encryption.
To improve the security strength, we present an optimized
construction for EncSIM with preserved performance benefits
of all-pairs LSH. Afterwards, we introduce a secure record
addition protocol to enhance the service of EncSIM.

Algorithm 1: The Setup(K,S, N) function of EncSIM
Input: Data owner’s private key: K; Dataset:
S = {s1, . . . , sn}; Number of servers: N ; LSH
parameters: lsh.

Output: Encrypted Indexes: I; Encrypted dataset: S∗.
begin

1 //Phase 1: encrypted data partition;
2 for i← 1 to n do
3 s∗i ← Enc(K, si);
4 j ← ConsistentHash(s∗i ); // track partition
5 Add si to partition Pj ;

6 // Phase 2: build an encrypted index per partition;
7 for j ← 1 to N do
8 Ij ← BuildIndex(K,Pj , lsh);

A. Architecture for Secure Distributed Similarity Search

To offer practical secure similarity search services on large
encrypted datasets, we envision that EncSIM is desired to
inherit advantages of distributed systems such as load balanc-
ing, horizontal scalability, and parallel processing [3], [24].
To achieve this goal, our observation is to follow existing dis-
tributed architectures and enable EncSIM to support encrypted
data partition, and encrypted index and data co-location.

From a high-level point of view, EncSIM employs a stan-
dard data partition algorithm, aka consistent hashing, over
encrypted data records. Then the cluster of servers is capable
to relocate encrypted records without learning the underlying
contents of data records, when new servers are added. Note
that achieving end-to-end data confidentiality protection re-
quires the data owner to encrypt records and build encrypted
indexes for the servers that provide secure similarity search
services. To enable encrypted index and data co-location,
EncSIM requires the data owner to be aware of the partition
of each encrypted record and build the index for each par-
tition respectively. As a result, the servers can later process
encrypted queries over their own partition in parallel.

Algorithm 1 presents the setup procedure of EncSIM at
the data owner side. There are two phases. The first is to
encrypt all the records and perform partition over the cipher-
texts. The second phase is to build encrypted similarity index
for each partition. The proposed architecture of EncSIM is
readily applicable to known practical secure similarity search
techniques [11], [14]. Because LSH solves large-scale simi-
larity search through fast hash matches, searchable symmetric
encryption (SSE) schemes for encrypted string search can
naturally be applied to secure similarity search in the encrypted
domain. In EncSIM, we resort to an SSE scheme proposed by
Cash et al. [19], since the scheme introduces small implemen-
tation and deployment efforts. The result encrypted index is
stored in a standard hash table which can directly be fit into
the production distributed in-memory data store like Redis for
high-performance query services.



Algorithm 2: BuildIndex(K,Pj , lsh)

Input: Data owner’s private key: K; A partition of data
records: P; LSH parameters: lsh.

Output: Encrypted Index: I .
begin

1 Initialize hash tables Hcounter and I;
2 for ∀s ∈ P do
3 for i← 1 to m do
4 t1i ← F1(K,ui(s)||i), t2i ← F2(K,ui(s)||i);

5 for x← 1 to (m− 1) do
6 for y ← (x+ 1) to m do

// F1, F2, and F3 are secure PRF.
// Basic construction:

7 // K1 ← t1x||t1y , K2 ← t2x||t2y;
// EncSIM’s construction:

8 K1 ← t1x ⊕ t1y , K2 ← t2x ⊕ t2y;

9 c← Hcounter.Get(K1);
10 if c 6= null then
11 Hcounter.Update(K1, c+ +);

else
12 Hcounter.Put(K1, 1);

I.Put(F3(K1, c),Enc(K2, id))

B. Basic Construction

To better present EncSIM, we first introduce a basic con-
struction that directly combines all-pairs LSH and SSE. In
practice, the number of LSH hash functions L is typically
large. As indicated in [3], such a parameter can achieve 780
for 1 million high-dimensional tweet vectors, which will bring
the considerable cost to the data owner and users. From the
perspective of the data owner, each record needs to be applied
to all L LSH functions. From the perspective of the user, L
tokens need to be generated from a query record for servers
to query. To reduce the cost, we propose to leverage all-pairs
LSH [3], [21], which reuses some of LSH functions for saving.
Construction: Algorithm 2 presents the index build function
for a certain partition of encrypted data records. Given m
partial LSH composite functions {u1, · · · , um} defined in
Section III-A and each record s in the partition, token t1i , t2i
are computed via F1(K,ui(s)||i), F2(K,ui(s)||i), where K
is the key, F1, F2 are secure PRF. Through

(
m
2

)
combinations

of all-pairs LSH, m(m − 1)/2 tokens are generated, where
each token (K1,K2) is in the form as (t1x||t1y , t2x||t2y). Note
that the token generation procedure in the basic construction
and EncSIM’s construction is put together in this algorithm
for easy presentation, because this is their only difference
in the index build function, which will later be explained in
Section V-C. By using the SSE scheme in [19], each token
and its matched records are treated as key-value pairs to
be encrypted in a standard hash table. In particular, another
hash table Hcounter is used to cache counters to track the

Algorithm 3: Basic construction: search protocol
Input: Query: sq; User’s key: K; LSH parameters: lsh;

Encrypted indexes: I; Encrypted dataset: S∗.
Output: Candidate set: A.
begin

USER: SearchToken
1 for i← 1 to m do
2 ti ← F1(K,ui(sq)||i)||F2(K,ui(sq)||i);

3 Send t = {t1, . . . , tm} to the coordinator;
4 Coordinator forwards t to all servers in the cluster.

SERVER: SimSearch
5 for ∀ti ∈ t do
6 Parse ti to t1i ||t2i ;

7 for x← 1 to (m− 1) do
8 for y ← (x+ 1) to m do
9 K1 ← t1x||t1y , K2 ← t2x||t2y;

10 for c = 1 until I.Get(F3(K1, c)) =⊥ do
11 id← Dec(K2, I.Get(F3(K1, c)));
12 Put s∗id to A;

number of matched records for each composite LSH function.
Accordingly, encrypted key-value pairs are constructed as
(F3(K1, c),Enc(K2, id)), where F3 is secure PRF.

In terms of the index build function, the secure similarity
search protocol can be initiated as shown in Algorithm 3.
The authorized user only needs to compute m tokens t =
{t1, · · · , tm} for the coordinator in the cluster. Then the
coordinator sends token t to all the servers for parallel
processing. On each server,

(
m
2

)
tokens are generated via

combinations, and each token (K1,K2) is used to access
the encrypted index I to find candidate records in sequence
via Dec(K2, I.Get(F3(K1, c))) where c is a self-incremental
counter. As the encrypted index and records in one partition
are located on the same server, the server can directly return
encrypted candidates to the user.

Remark on correctness and performance: The correctness is
guaranteed because of the deterministic mapping of the input
and output of PRF. The records with matched hashes have
corresponding matched tokens just like existing schemes [11],
[14]. Regarding performance, all-pairs LSH saves the user
computation time and makes the service of EncSIM more user-
friendly. As a result, EncSIM benefits from reduced setup time,
and a large saving of user computation and bandwidth costs.

Leakage analysis: We observe that such a simple integration
of all-pairs LSH and SSE leaks more information beyond the
recognized leakage in known SSE schemes. Defined in the
security notion of SSE [7], search and access patterns are the
only knowledge allowed to be learned. The former pattern
tells the repeated tokens appeared in the queries, and the latter
pattern tells the accessed index buckets and encrypted records
in each query.



Explicitly, if one uses the basic LSH algorithm like the
work [11], [14], the server learns the overlapped query tokens
between different queries, known as similarity search pattern,
defined as {u1(sqi), · · · , um(sqi)} ∩ {u1(sqj ), · · · , um(sqj )}
for two queries qi and qj . Recall that all-pairs LSH combines
two functions into a composite one. Namely, each hash used
for lookup is a concatenation of two hashes, i.e., ux(s)||uy(s),
and its corresponding token is also a concatenation of tx||ty .
Consider that tx||ty and t′x||t′y are two tokens of two queries,
no information should be learned if they are not equal.
Unfortunately, this basic approach leaks the information that
tx = t′x or ty = t′y even the above two concatenated tokens
are not equal.

C. The Proposed Construction

To improve the security, the challenge is how to minimize
the information learned from query tokens generated via all-
pairs LSH, while still preserving the correctness of token
combinations. Specifically, we devise a search protocol for
EncSIM, which can hide the equality of query tokens sent from
the user. This protocol includes a novel masking technique
to protect query tokens, and a new construction for token
combinations such that even permuted tokens are still able
to be combined correctly to locate matched candidates.
Design rationale: Before introducing the details, we first
explain the high-level idea here. Given a number of tokens
generated from a query record, the user utilizes random masks
to encrypt the tokens as an additional protection. To allow
the server to correctly combine the query tokens, we need to
provision the server a capability to cancel the masks without
knowing the equality of underlying tokens. As the combined
tokens still indicate the similarity search pattern, i.e., the
overlap of combined tokens of different queries, we further
design a token construction to enable the server to combine
the incoming query tokens obliviously. Even if some combined
token in two queries is matched, the server will not know the
exact mapping of underlying tokens used for combination.
Construction: First of all, the construction of combined token
is changed as t1x⊕t1y , t2x⊕t2y as shown in line 8 in Algorithm 2.
By using the XOR operation instead of concatenation, any
combinations of the two tokens will result in the same (K1,
K2), because XOR is commutative. Such a construction facil-
itates our following security mechanism that permutes query
tokens randomly, which will be introduced later. We also note
that XORing two tokens might introduce false positives, but
it will not affect the correctness because those false positives
can be removed via distance evaluations after retrieval.

The new search protocol of EncSIM is presented in Algo-
rithm 4. Given m query tokens {t1, · · · , tm} computed from
all-pairs LSH, they are randomly permuted: {t′1, · · · , t′m}.
Then for each token (t′

1
i , t
′2
i ), random masks are generated

for encryption, i.e., (t′
1
i ⊕ r1

i , t
′2
i ⊕ r2

i ). To allow the server
to correctly combine the tokens, the masks should be later
removed in the search operation. However, directly sending
the masks to the server will diminish the protection of
query tokens. To solve this problem, we propose to compute

Algorithm 4: EncSIM: search protocol
Input: Query: sq; User’s key: K; LSH parameters: lsh;

Encrypted indexes: I; Encrypted dataset: S∗.
Output: Candidate set: A.
begin

USER: SearchToken
1 {r1

1, . . . , r
1
m}

$←− (0, 1)λ; {r2
1, . . . , r

2
m}

$←− (0, 1)λ;
2 for i← 1 to m do
3 t1i ← F1(K,ui(q)||i), t2i ← F2(K,ui(q)||i);
4 ti ← t1i ||t2i ;

5 Randomly permute {t1, · · · , tm} to {t′1, · · · , t′m};
6 for i← 1 to m do
7 if i < m then
8 t′

1
i ← (t′

1
i ⊕ r1

i , r
1
i ⊕ r1

i+1);
9 t′

2
i ← (t′

2
i ⊕ r2

i , r
2
i ⊕ r2

i+1);

10 else
11 t′

1
i ← t′

1
i ⊕ r1

i ;
12 t′

2
i ← t′

2
i ⊕ r2

i ;

13 Send t = {t′1, . . . , t′m} to the coordinator;
14 Coordinator forwards t to all servers in the cluster.

SERVER: SimSearch
15 for i← 1 to m do
16 parse ti to t1i ||t2i ;
17 if i < m then
18 (α1

i , β
1
i )← t1i , (α2

i , β
2
i )← t2i ;

19 else
α1
i ← t1i , α2

i ← t2i ;

20 for x← 1 to (m− 1) do
21 for y ← (x+ 1) to m do
22 K1 ← α1

x ⊕ α1
y ⊕ β1

x ⊕ β1
x+1, . . . ,⊕β1

y−1;
23 K2 ← α2

x ⊕ α2
y ⊕ β2

x ⊕ β2
x+1, . . . ,⊕β2

y−1;
24 for c = 1 until I.Get(F3(K1, c)) =⊥ do
25 id← Dec(K2, I.Get(F3(K1, c)));
26 Put s∗id to A;

(r1
i ⊕ r1

i+1, r
2
i ⊕ r2

i+1) and send them along with tokens
to the server. With (r1

i ⊕ r1
i+1, r

2
i ⊕ r2

i+1), the server can
neither recover ti nor ti+1. After receiving the tokens, each
server parses each token as t1i = (α1

i , β
1
i ), t2i = (α2

i , β
2
i ). To

combine tx, ty where 1 < x < y < m, the server computes
K1 = α1

x⊕α1
y⊕β1

x⊕β1
x+1, . . . ,⊕β1

y−1,K2 = α2
x⊕α2

y⊕β2
x⊕

β2
x+1, . . . ,⊕β2

y−1. After that, the server uses the combined
token to find candidates via Dec(K2, I.Get(F3(K1, c))) just
like the basic construction.

To better illustrate our design, we present an example as
follows. For m = 3, {t1, t2, t3} are firstly generated. After
permutation, {t2, t1, t3} are derived, which are viewed by the
server as {t′1, t′2, t′3}. Then the user computes {t′1 ⊕ r1, t

′
2 ⊕

r2, t
′
3⊕r3} and {r1⊕r2, r2⊕r3} for the servers. At the server

side, t′1⊕ t′2 is derived from t′1⊕r1⊕ t′2⊕r2⊕r1⊕r2, t′2⊕ t′3



Algorithm 5: EncSIM: record addition protocol
Input: Data owner’s private key: K; New record: s; LSH
parameters: lsh; State table: st, ST.

Output: Updated Index: I .
begin

DATA OWNER:
1 s∗ ← Enc(K, s);
2 j ← ConsistentHash(s∗); // track partition
3 for i← 1 to m do
4 t1i ← F1(K,ui(s)||i), t2i ← F2(K,ui(s)||i);
5 if st.Get(t1i ) =⊥ then
6 sti

$←− {0, 1}λ;

7 for x← 1 to (m− 1) do
8 for y ← (x+ 1) to m do
9 K1 ← t1x ⊕ t1y , K2 ← t2x ⊕ t2y;

10 STsc||sc← ST.Get(K1);
11 if STsc||sc =⊥ then
12 stx ← st.Get(t1x), sty ← st.Get(t1y);
13 ST0 ← stx ⊕ sty , sc← −1;

14 else
15 STsc+1 ← π−1

sk (STsc);

16 ST.Put(K1, STsc+1||sc+ 1);
17 UTsc+1 ← F3(K1, STsc+1);
18 Add (UTsc+1,Enc(F3(K2, STsc+1), id) to A;

19 Send A, s∗ to server j.

SERVER j:
20 Put all key-value pairs in A to I;

is derived from t′2 ⊕ r2 ⊕ t′3 ⊕ r3 ⊕ r2 ⊕ r3, and t′1 ⊕ t′3 is
derived from t′1⊕ r1⊕ t′3⊕ r3⊕ r1⊕ r2⊕ r2⊕ r3. In essence,
the server obtains t2 ⊕ t1, t1 ⊕ t3, and t2 ⊕ t3, but it will not
learn the underlying combination.
Security guarantee: The above search protocol guarantees
the minimized information public to external adversaries. The
masked and permuted tokens prevent them from learning the
search pattern. As the indexes and data records are encrypted,
even those adversaries obtain their copies occasionally, they
never learn any useful information about the queries, indexes,
and data records. For internal adversaries, EncSIM indicates
the comparable information compared to prior work [11], [14].
Since they might be able to monitor the query procedure, they
would know the similarity search pattern, i.e., the overlapped
combined tokens across different queries, and the access
pattern, i.e., the candidates of each query.

D. Secure Data Addition

EncSIM also supports data addition when the data owner
has new encrypted data records to be included in the service.
However, most of the prior dynamic SSE schemes [14], [18]
would reveal partial information about a newly added record,
i.e., its tokens appeared in previous queries. In the context of

similarity search, without search, the server could learn the
similarity between the new record and some old records. To
solve this issue, EncSIM adopts the latest technique achieving
forward security [16], such that the above information is
protected in record addition. The idea is to use one-way
permutation to make tokens stateful. The tokens of new
records are generated via new states.

To preserve the benefit of all-pairs LSH, we carefully
integrate the above technique into the construction of EncSIM.
The detailed protocol of secure data addition is introduced
in Algorithm 5. Given a new record s, the data owner first
encrypts it to get s∗, and computes consistent hashing to locate
its partition. Next, m tokens are computed from m partial
composite hashes. For each token ti, if the corresponding
state is not found in a table st, a new state sti is randomly
generated. Then for each combined token tx ⊕ ty , its initial
state ST0 is derived as stx ⊕ sty , and its subsequent state
is derived from a one-way permutation π−1

sk of the previous
state STsc, where STsc is cached in another table ST.
Afterwards, each key-value pair is generated via a stateful
count: (F3(K1, STsc+1),Enc(F3(K2, STsc+1), id).

To perform search, the user now needs to send the states of
query tokens {st1, · · · , stm} to the server. After token combi-
nations, the server finds the last state of each combined token
STc||c in ST, and starts to find the candidates one by one via
Dec(F3(K2, STc), I.Get(F3(K1, STc)). The subsequent state
STc−1 can be derived through πpk(STc), where (pk, sk) is
the key-pair of one-way permutation π. We refer the reader
to [16] for its underlying construction based on RSA.

VI. SECURITY ANALYSIS

This section quantifies the security strength of EncSIM. The
methodology is to use the security notion of searchable sym-
metric encryption [7], [18] to prove that EncSIM protects the
contents of queries, indexes and data records throughout the
service, and only indicates controlled auxiliary information.

Basically, we first define the leakage in the setup. The
leakage function L1 for the Setup function is given as follows:

L1(S) = (N, {n1, · · · , nN}, |s∗|, |l|, |v|)

where N is the number of partitions, {n1, · · · , nN} are the
number of encrypted records in each partition, |s∗| is the
size of ciphertext, |l|, |v| are the size of key-value pairs in
the encrypted indexes. We note that the above is the only
information to be learned if the adversary can only obtain the
images of the index and database.

Then, we define the leakage in the search protocol, i.e.,
similarity search pattern L2 and access pattern L3. L2 is
defined as follows:

L2(sq) = ({|{g1(sq), · · · , gL(sq)} ∩ {g1(si), · · · , gL(si)}|}q)

where i ∈ [1, q]). This function outputs that for a given query
sq , the server can learn the size of overlapped combined tokens
between sq and previous queries. Recall that our proposed
search protocol protects the tokens before combinations, and



thus the security is comparable to existing secure similarity
search schemes based on SSE [11], [14]. The access pattern
L3 is defined as follows:

L3(sq) = ({{〈l, v〉}Mi , {s∗}Mi}N , i ∈ [1, N ])

This function shows that for each partition, the server knows
the accessed key-value pairs in the index, and the matched
encrypted records. Based on the above functions, we define
the security notion of EncSIM as follows:

Definition 2. Let Φ = (Setup,SearchToken,SimSearch)
be the functions in EncSIM. Given leakage functions
(L1,L2,L3), a probabilistic polynomial time adversary A
and simulator S, we define two games RealΦA(λ) and
IdealΦA,S(λ) below:
RealΦA(λ): A choose a dataset S. A challenger generates

K
$←− {0, 1}λ, runs Setup, and outputs I,S∗ to A. Then

A adaptively sends q query records to proceed the search
protocol. For each query, the challenger generates token t from
SearchToken for A to query the server through SimSearch. In
the end, A returns a bit as the output.

IdealΦA,S(λ): A choose a dataset S. S outputs simulated
Ĩ, S̃∗ based on L1. For q adaptive queries, S outputs simu-
lated t̃ based on L2 and L3 for A to query the server. In the
end, A returns a bit as the output.

EncSIM is (L1,L2,L3)-secure against adaptive chosen-
keyword attack if for all probabilistic polynomial time adver-
saries A, there exists a simulator S such that

Pr[RealΦA(λ)]− Pr[IdealΦA,S(λ)] ≤ negl(λ).

where negl is a negligible function in λ.

Accordingly, we give the following theorem:

Theorem 1. EncSIM is (L1,L2,L3)-secure against adap-
tive chosen-keyword attacks in the random oracle model if
F1, F2, F3 are secure PRF and (Enc,Dec) are semantically
secure.

Proof. We will prove that the adversary A can hardly differ-
entiate the views of interacting with the real server from the
views of interacting with the simulator S. In terms of L1, S
knows the number of partitions N and the number of data
records in each partition {n1, · · · , nN}. Thus, S generates
a random string |̃s∗| with the size of |s∗| to simulate each
encrypted record. For partition i from 1 to N , S further
generate Lni dummy key-value pairs with the size of |l|, |v|
to simulate the index Ĩi, where L is the number of LSH
composite functions. As a result, the real and simulated
indexes, and the real and simulated encrypted records are
computationally indistinguishable.

To simulate the first query, S simulates the token set t̃ =
{t̃1, · · · , t̃m} with random strings, and it then obtains L=

(
m
2

)
tokens {K̃1, K̃2}. For partition i from 1 to N , S uses random
oracle H to find key-value pairs, i.e., Ĩi.Get(H(K1, c)) for
all tokens, where c increments from 0, and the sum of all
counters {c}L is equal to Mi. By replacing Enc(K̃2, id) with
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Fig. 2: Setup time

H(K̃2||r)⊕id, id can be obtained which is the same as shown
L3. Based on {id}Mi

, S gives the simulated records {s̃∗}Mi
.

For the subsequent query, S learns the number of overlapped
combination tokens from L2, denoted as b′. Thus, it also learns
the number of matched ones in m tokens, denoted as b, where
b′=
(
b
2

)
. After that, S selects b simulated tokens from the first

query which leads to b′ overlapped combination tokens, and
generates random tokens for the rest of m− b tokens. For the
combination tokens appeared before, S copies previous results.
Otherwise, it follows the same way of simulating results in the
first query. Due to the pseudo-randomness of F1, F2, F3, the
simulated and real tokens are indistinguishable. The size of
overlapped tokens among any two queries is also consistent
in two games. Finally, the result candidate ids are identical.
Therefore, IdealΦA,S(λ) are indistinguishable.

VII. EXPERIMENTAL EVALUATION

A. Setup

To evaluate the performance of EncSIM, we implement a
prototype via∼5000 lines of Java code, and publish the code at
Github1. We deploy this prototype on a cluster of Redis(v3.2.8)
servers2, which consist of 1 job submission node and 5
execution nodes with encrypted indexes and corresponding
encrypted records stored. Each node has two Intel(R) Xeon(R)
CPU E5-2620 0 @ 2.00GHz, 256 GB RAM and CentOS 6.4
installed. EncSIM uses the cryptographic package of JRE 1.7
for cryptographic primitives. Secure PRF is implemented via
HMAC-SHA1. The symmetric encryption is constructed as
(r,HMAC-SHA1(K, r) ⊕ record), where r is a nonce. The
measurements reported in this section make use of a database
derived from a twitter collection named Sentiment1403, which
contains over millions of tweets. For each tweet, we encode
a sparse binary vector in a 374,747-dimension space based
on the size of vocabulary extracted. Here, we apply Hamming
distance as the distance measure, and the all-pairs LSH param-
eters are selected as d = 16,m = 40, L = 780, radius = 15.

B. Evaluation

We report the efficiency and scalability of EncSIM via a
set of performance factors, i.e., setup time, token generation
time, token bandwidth cost, query time, throughput, record

1EncSIM prototype: https://github.com/CongGroup/IWQOS-2017-EncSIM
2High Throughout Computing Cluster at City University of Hong Kong:

http://cslab.cs.cityu.edu.hk/services/high-throughput-computing-cluster-htcc.
3Sentiment140 Twitter Data: http://help.sentiment140.com/for-students/



Schemes Token computation Token size
Baseline O(dL) O(dL)

EncSIM O(d
√
L) O(d

√
L)

TABLE I: Complexity comparison: the complexity of baseline
is applied to the direct usage of LSH and any SSE schemes.
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addition time, and accuracy. For comparison, we implement a
construction denoted as “baseline” that directly combines the
basic LSH algorithm and the SSE scheme in [19]. We also
implement the basic LSH algorithm denoted as “plaintext” to
evaluate the security overhead.

Figure 2 displays the index building time for EncSIM and
baseline. Both of them increase linearly according to the num-
ber of data records, while EncSIM shortens around 15% time
consumption compared with baseline. For an encrypted index
with 1 million data records, there is overall 50 minutes saved
by our design. The reduction stems from the less computation
cost of all-pairs LSH in EncSIM. This advantage is more
obviously reflected in secure token generation as Figure 3-
(a) illustrated. We choose three groups of LSH functions:
435, 780, and 1225 numbers of composite LSH functions
and evaluate the token generation time in milliseconds. As
shown in Table I, the time of baseline ascends sharply followed
by the growth of L, i.e., the number of LSH functions. On
contrast, such cost of EncSIM barely goes up as a result of
the token computation complexity is O(

√
L). Although our

design involves in the XOR operations, it takes negligible
time compared with LSH and PRF calculations. Similarly,
Figure 3-(b) also provides the empirically observable evidence
of bandwidth retrenchment contributed by all-pairs LSH. The
growing number of LSH functions are attributed to the rise
of bandwidth overhead for baseline (L|HMAC-SHA1|), yet
EncSIM remains a flat trend (m|HMAC-SHA1|+(m − 1)|r|),
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where |HMAC-SHA1| is 20-byte and the randomness r is also
20-byte. Overall, for L = 1225, the token generation time
brings a saving of 25×, and the token size shrinks over 11 ×
compared to baseline.

Then we turn our attention from the user side workload
to server runtime evaluation. The search time as well as the
insertion time present in chunks of 1K data records in the
single node mode. According to Figure 4 providing, both
schemes formed a similarly uplifted pattern during the gradual
rise of returned results. Such outcome indicates that EncSIM
does not aggravate overhead on the server side compared with
baseline. The record addition of EncSIM includes tweet vector
generation, encrypted key-value pairs computation, and put
operations to the Redis. As exhibited in Figure 5, the insertion
time ascends linearly based on the amount of new records.

The scalability of EncSIM is confirmed through search time
and throughput. Figure 6 demonstrates how the performance of
EncSIM improves with increasing the number of cores. We can
observe a dramatic speedup in similar proportions of queries
that return a specified number of candidates in Figure 6-
(a). The time consumption with 20 cores is approximately a
quarter of it with a single core. Queries that return 5K and
10K take around 190ms and 500ms. Likewise, as Figure 6-
(b) displays, the throughput of EncSIM performs sustainably
climbing accompany with the incremental cores. In particular,
the peak number of candidates processed with 20 cores rep-
resents reaches 2.6 × 104 per second, a loss of 26% to the
plaintext.

The accuracy is measured on running random 1000 queries
selected from the dataset. EncSIM reaches 96% recall rate
for range queries. We also report the precision of Top-
k queries. The precision is qualitative via the definition
( 1
k

∑k
i=1

dist(s′i−sq)
dist(si−sq) ), where sq is the query record, si is the

i-th nearest neighbor to sq of LSH, and s′i is the ground
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truth i-th nearest neighbor. As Figure 7 demonstrates, although
the precisions appear a degradation along with the raise of k
with tiny fluctuation, all of them remain 0.9. Note that our
security design does not affect the correctness of LSH due to
the deterministic property of PRF.

VIII. CONCLUSION

In this paper, we design and develop a secure and scal-
able service named EncSIM for similarity search over dis-
tributed, encrypted data records. EncSIM partitions the en-
crypted records across a cluster of servers and allows the
encrypted index to be stored with the records together, so that
EncSIM enables all the servers to process the secure similarity
query in parallel. To reduce the user overhead, we adopt a
variant of LSH algorithms called all-pairs LSH, and carefully
design a query protocol for EncSIM to minimize the leakage
while preserving the performance benefits. Besides, EncSIM
provides a secure data addition protocol that achieves forward
security. Intensive performance evaluations on a Redis cluster
demonstrate the efficiency and scalability of EncSIM.
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