
MediSC: Towards Secure and Lightweight Deep
Learning as a Medical Diagnostic Service

Xiaoning Liu1, Yifeng Zheng2,
?
, Xingliang Yuan3, and Xun Yi1

1 RMIT University, Melbourne Australia {maggie.liu, xun.yi}@rmit.edu.au
2 Harbin Institute of Technology, Shenzhen, China yifeng.zheng@hit.edu.cn

3 Monash University, Clayton, Australia xingliang.yuan@monash.edu

Abstract. The striking progress of deep learning paves the way towards
intelligent and quality medical diagnostic services. Enterprises deploy
such services via the neural network (NN) inference, yet confronted with
rising privacy concerns of the medical data being diagnosed and the pre-
trained NN models. We propose MediSC, a system framework that enables
enterprises to offer secure medical diagnostic service to their customers
via an execution of NN inference in the ciphertext domain. MediSC en-
sures the privacy of both parties with cryptographic guarantees. At the
heart, we present an efficient and communication-optimized secure infer-
ence protocol that purely relies on the lightweight secret sharing tech-
niques and can well cope with the commonly-used linear and non-linear
NN layers. Compared to the garbled circuits based solutions, the latency
and communication of MediSC are 24× lower and 868× less for the se-
cure ReLU, and 20× lower and 314× less for the secure Max-pool. We
evaluate MediSC on two benchmark and four real-world medical datasets,
and comprehensively compare it with prior arts. The results demonstrate
the promising performance of MediSC, which is much more bandwidth-
efficient compared to prior works.

Keywords: Secure computation · Privacy-preserving medical service ·
Neural network inference · Secret sharing.

1 Introduction

Recent thriving deep learning techniques have been fueling a wide spectrum
of medical endeavors, ranging from the radiotherapy [5], clinical trial and re-
search [7], to medical imaging diagnostics [6]. Enterprises capitalize on neural
networks (NNs) to offer medical diagnostic services, facilitating hospitals and re-
searchers to produce faster and more accurate decisions over their medical data.
With the growth in such offerings comes rapidly growing awareness of daunting
privacy concerns. The medical data is of sensitive nature and must be always
kept confidential [13, 8, 24, 25]. Meanwhile, NN models used in these services are
seen as lucrative intellectual properties and encode knowledge of private training
data [14].

? Corresponding author.
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The general setup of the above NN-powered service scenario fits within the
field of secure multi-party computation (MPC). By designing specialized MPC
protocols, recent works [15, 22, 19, 28, 21] enable the joint execution of secure NN
inference systems over encrypted customer’s data and/or the service provider’s
model. Nevertheless, these systems still come at a steep performance overhead
that may not be amiable for the real-world medical scenario. During inference,
they all require customers to conduct heavy cryptographic computations like
homomorphic encryption (HE) and garbled circuits (GC), imposing intensive
computational and communication overheads. These performance hurdles are
further exacerbated when, e.g., the service is deployed to a hospital with resource-
constrained devices (like portable medical imaging scanners [18]). Furthermore,
some of their protocols [15, 19] are not directly compatible with the widely-
adopted non-linear functions (like ReLU), causing limitations of applicability
for modern NN architectures.

We design, implement, and evaluate MediSC, a lightweight and secure NN
inference system tailored for medical diagnostic services. MediSC proceeds by
having the hospital and the medical service engage in a tailored secure inference
protocol over their encrypted inputs. Only the hospital learns the diagnostic
result; and the privacy of the medical data and model is ensured against each
other. In particular, we combine insights from cryptography and digital circuit
design, making an efficient and low-interaction service suitable for realistic med-
ical scenarios. Our contributions are summarized as follows.

– We propose a secure NN inference system framework MediSC relying only
on the lightweight secret sharing techniques, which requires neither heavy
cryptographic computation nor large-size ciphertext transmissions.

– We present a hybrid protocol design that consists of a preprocessing phase and
an online phase where the preprocessing phase conducts as much computation
as possible to ease the online phase. Moreover, the preprocessing only involves
lightweight computation in the secret sharing domain.

– We devise an efficient and communication-optimized secure comparison func-
tion to support the most challenging and widely adopted non-linear functions
(ReLU and Max-pool), harnessing the insights from cryptography and the
field of digital circuit design. Compared to the commonly-used GC solutions,
MediSC’s secure ReLU is 24× faster and requires 868× less communication,
and the secure Max-pool is 20× faster and uses 314× less communication.

– We conduct formal security analysis. We implement a prototype of MediSC and
conduct comprehensive evaluations over two benchmarking datasets and four
realistic medical datasets. Our experiment results show that MediSC requires
the least network resources compared to prior works with up to 413×, 19× and
10× bandwidth savings for MNIST, CIFAR-10, and the medical applications,
respectively. MediSC outperforms the state-of-the-art (SOTA) [28] by 10× in
bandwidth cost, with comparable latency4.

4 From a direct comparison with results reported in SOTA which demands highly
optimized implementations with GPU acceleration. Our performance result is not
based on such optimization.
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2 Related Works

The past few years have seen an increased interest in secure neural network
inference. A plethora of prior works [15, 22, 19, 21, 12, 28, 36, 34] focus on a sce-
nario where an interactive protocol is run between the service provider and the
customer. Some other works [29, 31, 23] rely on a security assumption where two
non-colluding cloud servers are employed to jointly conduct secure inference over
outsourced model and data. Despite their different system models, these works
require to use heavy cryptographic tools (like HE and GC) during the latency-
sensitive online inference procedure. Moreover, some of these works do not fully
support the modern NN models [15, 19]. Instead, these works approximate the
non-linear functions into the crypto-friendly polynomials, trading the accuracy
and applicability for efficiency [26, 20], which could cause critical consequences
in the medical scenario.

The SOTA work [28] presents a hybrid and interactive inference protocol,
preprocessing some cryptographic operations to accelerate the online inference
execution. However, this work still demands intensive workloads on the customer
to conduct heavy cryptographic computations during preprocessing, and relies
on expensive GC based approach to evaluate the ReLU. MediSC adopts a similar
hybrid setting yet only involves the lightweight secret sharing techniques dur-
ing the entire secure inference procedure, which has an prominent advantage of
rather simplified implementation for easy real-world deployment, compared to
the SOTA which requires heavy optimization in GC and homomorphic encryp-
tion implementation.

3 Preliminaries on Additive Secret Sharing

Additive secret sharing [9] protects an `-bit value x ∈ R2` as two secret shares
〈x〉0 = r (mod 2`) and 〈x〉1 = x − r (mod 2`) such that 〈x〉A0 + 〈x〉A1 ≡ x
(mod 2`), where Z2` is a ring and r is a random value from the ring (r ∈R Z2`).
It perfectly hides x as each share is a random value and reveals no information
of x. Given two parties P0 and P1, each party holds the corresponding shares
of two secret values x and y. Additive secret sharing supports efficient local
addition/subtraction over shares 〈z〉i = 〈x〉i ± 〈y〉i and scalar multiplication
〈z〉i = η · 〈x〉i (η is a public value). They are calculated by each party Pi (i ∈
{0, 1}) without interactions. Multiplication over two shares 〈z〉 = 〈x〉 · 〈y〉 is
enabled with the secret-shared Beaver’s triple [11], i.e., Pi holds (〈t1〉i, 〈t2〉i, 〈t3〉i)
in a way that t3 = t1 · t2. Such a multiplication with Beaver’s triple is a standard
secure protocol, whereby Pi obtains the shares 〈z〉i of xy at the end. Note that
Beaver’s triples are data independent and can be efficiently generated via one-
off computation by a third party [37, 31]. Additive secret shares can support
boolean operations over binary values. Given the bit length ` = 1 and the ring
Z2, a secret binary value x is shared as JxK0 = r ∈ Z2 and JxK1 = r ⊕ JxK0. The
bitwise XOR (⊕) and AND (∧) over shares are calculated in the same way as
the above addition and multiplication, respectively.
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Fig. 1. System architecture.

4 System Overview

4.1 Architecture

MediSC targets a typical scenario of secure NN inference based medical diagnos-
tic service. As shown in Fig. 1, MediSC operates between two parties: the hospital
(customer) and the medical service provider. The medical service holds a pro-
prietary NN model that is pre-trained on medical datasets. The hospital holds
confidential medical records (e.g., brain MRI images) and intends to leverage
the deep learning service to facilitate a medical conclusion. In practice, the role
of hospital in MediSC can actually be any healthcare institutes, medical research
laboratories, or life-science organizations. To initiate a secure medical diagnos-
tic service, the two parties execute MediSC’s secure NN inference protocol over
their encrypted model and encrypted medical record. At the end, an encrypted
inference result is returned to the hospital which can then decrypt to get the
plaintext inference result. MediSC ensures that the hospital learns the inference
result and nothing else, while the medical service learns no information about
the hospital’s medical records.

4.2 Threat Model

MediSC is designed for the semi-honest two-party model: the hospital and the
medical service will faithfully follow the protocol, yet attempting to deduce in-
formation about the counterparty’s private input from the messages seen from
protocol execution. It is noted that the behavior of hospital is enforced by the
ethics, law and privacy regulations [8, 13]. The medical service is usually of-
fered by well-established companies (e.g., Microsoft Project InnerEye [6], Google
DeepMind Health [5]) and would not take their business model and reputation
at risk to act maliciously [10]. Such an adversarial model is also adopted in prior
secure NN inference works [28, 22]. MediSC strives to ensure the privacy of the
hospital’s medical records and the NN model (values of trained weights). Like
prior work [28, 22, 23], MediSC does not hide the data-independent model archi-
tecture, such as kernel size and number of layers. Lastly, MediSC deems thwarting
adversarial machine learning attacks orthogonal, which attempt to exploit the
inference procedure as a blackbox oracle to extract private information. Mitiga-
tion strategies can be the differentially private learning [35].
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Fig. 2. MediSC’s preprocessing phase.

5 Our Proposed Design

In this section, we introduce MediSC’s secure NN inference protocol for med-
ical diagnostic applications. At a high level, our design consists of two types
of secure layer evaluations: secure linear and non-linear layers, which can well
support the typical NN layers, i.e., the convolutional/fully-connected/batch nor-
malization/average pooling layers (linear), and the ReLU activation/max pool-
ing layers (non-linear). Each secure layer evaluation conducts a certain function
on the encrypted inputs (features) and yields encrypted outputs passed to the
next secure layer. Our overarching goal is to devise a lightweight protocol for
secure neural network inference, while minimizing interactions in between the
hospital and the medical service for a low-latency diagnosis. Atop such goal, we
have two prominent design insights.
Eliminating heavy cryptography for linear layers. We first split MediSC’s
protocol into a preprocessing phase and an online phase, and shift as much com-
putation as possible to preprocessing phase. Inspired by [28], we preprocess the
model as secret shares and deliver corresponding shares to the hospital before
medical record becomes available. So, the online phase can directly work over se-
cret shares without any heavy cryptographic techniques (like HE) or multi-round
ciphertext transmissions. Yet we are aware that the protocol in [28] involves
heavy HE during preprocessing to produce and send the model shares as cipher-
texts, which may not be amiable for the resource-limited hospital, like COVID-19
pandemic screening centers with handheld medical imaging scanners [18]). In-
stead, our protocol delicately leverages the insight from Chameleon [31] and
enables the preprocessing to be purely based on lightweight computation in the
secret sharing domain. As a result, our entire protocol works only with small
shares, which immediately gains 20× improvement on preprocessing and 10× on
overall communication costs over [28].
Eliminating the usages of GC for non-linear layers. For secure evaluation
of non-linear layers, prior works either resort to the heavy cryptographic tech-
niques (i.e., garbled circuits) [22, 28], or circumvent the non-linearities with their
polynomial approximations [19, 15]. Unfortunately, such methods may introduce
high communication overheads or introduce instabilities of NN when handling
complex tasks [26, 20]. In MediSC, we make observations from the field of digital
circuit design [17] and present a secure comparison function that can efficiently
evaluate comparison-based non-linear layers like ReLU. At the core, this function
is fully based on lightweight secret sharing with optimized interactions between
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Fig. 3. MediSC’s online phase.

the hospital and the medical service. With these designs, our experiment demon-
strates a 413× bandwidth reduction compared with prior works.

5.1 Secure Linear Layers

The subsequent section presents MediSC’s secure inference protocol, which com-
prises two phases: the preprocessing phase and the online inference phase. Before
diving in to the details, we first note that MediSC works over the secret shar-
ing domain. That is, any float-point number v (i.e., model weights and medical
record values) is projected to a signed fixed-point integer v̄ = bv · 2sc mod 2` in
ring Z2` , where 2s is the scaling factor. The most significant bit (MSB) indicates
the sign (1→negative; 0→non-negative)5. Through such a conversion, both the
value and sign information are perfectly hidden.
Preprocessing phase. The preprocessing phase is illustrated in Fig. 2. The
hospital and the medical service pre-generate secret shares of the NN model in
an appropriate form which are to be used during online inference. This is a one-
off computation and conducted independent of the hospital’s medical record. Let
L be number of layers. The hospital takes as input the L sets of randomnesses
(in tensor form) {a0

i ,a
2
i }, where i ∈ [1, L]. Similarly, the medical service takes as

input the tensors of model weights for each layer W1, ...,WL and randomnesses
tensors {a1

i ,a
3
i }. Such randomness tensors {a0

i ,a
1
i ,a

2
i ,a

3
i } are independent to

any party’s input and can be pre-distributed to the parties, and satisfy the
relationship: a3

i = a0
i · a1

i − a2
i . Note that the dimension of each randomness

tensor is in line with the dimension of each layer’s filter. Given these inputs, the
two parties perform the following steps.

1. For each i ∈ [1, L], the medical service computes Wi − a1
i over the weight

tensors and sends to the hospital.
2. The hospital computes (Wi − a1

i ) · a0
i = Wia

0
i − a0

ia
1
i + a2

i for each layer.
3. Let ui denote a0

i , and vi denote a3
i . The medical service thus holds vi, and

the hospital holds Wiui − vi, i.e., an additively secret-shared weight tensors
Wiui.

5 We refer the readers to more details in Appendix Sec. A.
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Online inference phase. During online inference, the hospital takes as input
the tensor of a medical record X1, the randomnesses ui, and weight shares
Wiui − vi, as shown in Fig. 3. The medical service takes as input the weight
tensors W1, ...,WL and the randomnesses vi. They then perform the secure
layer function in pipeline as follows.
The first linear layer i = 1:

1. The hospital computes and sends X1 − u1 to the medical service, and uses
〈X2〉0 to denote W1u1 − v1.

2. The medical service computes 〈X2〉1 = W1(X1−u1)+v1 = W1X1−W1u1+
v1.

3. At this point, the hospital and the medical service hold the additive secret
shares (i.e., 〈X2〉0, 〈X2〉1) of features6 outputted from the first linear layer
W1X1 .

Remaining linear layers i ≥ 2:

1. Similar to the first layer, the hospital computes 〈X̄i〉0−ui over its share 〈X̄i〉0
of activation produced from the secure ReLU evaluation (which we will detail
later), and sends it to the medical service. Such a treatment can perfectly
hide the hospital’s share, and protect the activation X̄i against the medical
service. It then sets 〈Xi+1〉0 = Wiui − vi.

2. The medical service computes Xi − ui = 〈X̄i〉0 − ui + 〈X̄i〉1. Then it gets
〈Xi+1〉1 = Wi(Xi−ui)+vi, ensuring both parties hold additive secret shares
(i.e., 〈Xi+1〉0, 〈Xi+1〉1) of layer result WiXi.

Non-linear layers: The shares form secure linear layer evaluation can be fed into

the secure non-linear layer (e.g., ReLU), which outputs shares 〈X̄i+1〉0, 〈X̄i+1〉1
of activations to each party.
Output layer: The medical service sends 〈XL〉1 to the hospital, who can then
integrate 〈XL〉0 for reconstruction of the the final inference result XL.

5.2 Secure Non-linear Layers

MediSC supports highly efficient evaluation of the secure non-linear layers in the
secret sharing domain. As mentioned above, MediSC denotes all values as the
signed fixed-point integers with MSB indicating the sign, i.e., the MSB would be
‘0’ for a non-negative value and ‘1’ for a negative value. With such a represen-
tation, we observe that all non-linear layers mainly relying on the comparison
operation can be simplified to an MSB extraction problem along with some lin-
ear operations (addition and multiplication). For the ease of presentation, we
focus on the most-widely adopted ReLU function. The ReLU function can be
converted to a simplified MSB extraction problem via

max(x, 0)→ ¬MSB(x) · x =

{
1 · x if x ≥ 0

0 · x if x < 0
, (1)

6 Biases can be added to the medical service’s shares locally.
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Fig. 4. An illustration of 8-bit parallel prefix adder (PPA).

where x is the feature on each neuron outputted from previous linear layer.
Through such a conversion, we observe that it consists of four atomic steps:
the secure MSB(·) extraction, the secure NOT, the secure B2A (i.e., Boolean-to-
Additive shares conversion), and the secure multiplication. The most challenging
computation is the secure MSB(·) extraction, of which we propose an efficient and
communication-optimized construction and present the details in the subsequent
section. For the rest steps, the secure B2A converts boolean shares JxK in ring
Z2 to additive shares in Z2` , i.e., 〈x〉 ← B2A(JxK). Meanwhile, the secure NOT
and the secure multiplication are linear operations and well handled by additive
secret sharing.

Communication-optimized secure MSB extraction. The secure MSB(·)
extraction function is used to securely extract the MSB of an additive-shared
data 〈x〉 and generate a boolean-shared MSB Jx`K, where ` is the bit length. The
idea is that extracting the MSB in the secret sharing domain can be performed
via binary addition over two secret shares’ bit strings by an `-bit full adder,
as expatiated below. Suppose an `-bit value x with its decomposed bit string
x = {x`, ..., x1} and the secret shares 〈x〉0, 〈x〉1. Let e = {e`, ..., e1} and f =
{f`, ..., f1} denote the bit strings of 〈x〉0 and 〈x〉1, respectively. In this way, x =
e+ f (mod 2`). Then, an `-bit full adder is used to perform the binary addition
({ek}+ {fk}) in the secret sharing domain to produce the carry bits c`, . . . , c1,
and finally the MSB is calculated via x` = c` ⊕ e` ⊕ f`, where k ∈ [1, `]. The
key takeaway to extract the MSB is producing the most significant carry bit c`
via the full adder logic. In the following section, without specifically mentioned,
the operator ‘+’ over two binary values (including boolean shares) denotes the
bitwise-XOR operation for the ease of demonstration.

We make an observation from the field of digital circuit design that the
parallel prefix adder [17] (PPA) offers an efficient realization of the full adder
logic in logarithm round complexity O(log `). To construct PPA, we introduce a
signal tuple (gi, pi): the carry generate signal gi and the carry propagate signal
pi, which can be derived in parallel via

gi = ei · fi; pi = ei + fi. (2)
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Algorithm 1 Secure MSB(·) Extraction Function.

Input: Arithmetic shared integer feature 〈x〉 ∈ Z2` .
Output: Boolean shared MSB Jx`K ∈ Z2.

Decompose 〈x〉 into bit strings:
1: Let e denote 〈x〉0 and f denote 〈x〉1.
2: Decompose to bit strings e→ e`, ..., e1 and f → f`, ..., f1.
3: for k ∈ [1, `] do
4: Set JekK0 = ek, JekK1 = 0 and JfkK0 = 0, JfkK1 = fk.
Compute signal tuples (g, p) in Eq. 2:

5: Jg0kK = JekK · JfkK, Jp0kK = JekK + JfkK.
6: end for
Compute PPA tree based on Eq. 3:
Round R = 1:
7: for k ∈ [2, `/2] do
8: Set (Jg11K, Jp11K) = (Jg01K, Jp01K) as a dummy node.
9: Let in1 = 2k − 2, in2 = 2k − 1.

10: (Jg1kK, Jp1kK) = (Jg0in1
K, Jp0in1

K)� (Jg0in2
K, Jp0in2

K).
11: end for
Round R = 2, ..., log `:
12: for k ∈ [1, `/2R] do
13: Let in1 = 2k − 1, in2 = 2k.
14: (JgRk K, JpRk K) = (JgR−1

in1
K, JpR−1

in1
K)� (JgR−1

in2
K, JpR−1

in2
K).

15: end for
Compute MSB:

16: Set Jc`K = Jglog `
1 K, Jx`K = Jp0`K + Jc`K.

Then the full adder logic ci+1 = (ei · fi) + ci · (ei + fi) is reformulated as ci+1 =
gi+ ci ·pi, and the `-th carry bit can be generated via c` = g`−1 + (p`−1 · g`−2) +
... + (p`−1...p2 · g1). Through this reformulation, PPA can extract the MSB in
O(log `) communication round latency.

A concrete illustration of 8-bit PPA is given in Fig. 4. As shown, it constructs
a log `-depth (3-depth) binary tree with a binary operator � adhering to each
node. Each layer of the tree indicates one round of communication. The binary
operator � takes as inputs the two adjacent signal tuples (gin1

, pin1
), (gin2

, pin2
),

performs the following computations:

(gout, pout) = (gin1
, pin1

)� (gin2
, pin2

); (3)

gout = gin2
+ gin1

· pin2
; pout = pin2

· pin1
,

and outputs a signal tuple (gout, pout). PPA iteratively performs the above binary
operation over the input tuples associated with each leaf node, and propagates
the outputted signal tuples to the next layer’s nodes as inputs. Such computa-
tions are terminated until the root node is reached, i.e., the node with (p31, g

3
1)

in Fig. 4. To this end, the carry bit c` is obtained and the MSB is calculated via
x` = c` + p` = c` + (e` + f`). In light of above philosophy, we present details of
the secure MSB extraction function in Algorithm 1.
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Secure B2A function. Given a secret value x, the secure B2A function is used
to convert its boolean shares JxK in ring Z2 to the corresponding additive secret
shares 〈x〉 in ring Z2` . Recall that our proposed secure ReLU function over each
feature x is formulated as follows: max(x, 0) → ¬MSB(x) · x. The secure B2A
function is invoked after securely extracting the boolean shares of NOT MSB
J¬x`K. However, the produced boolean shares cannot be directly multiplied with
the additively-shared feature 〈x〉 as they are shared with different moduli, i.e.,
J¬x`K = J¬x`K0 + J¬x`K1 (mod 2) and 〈x〉 = 〈x〉0 + 〈x〉1 (mod 2`). So we need
to convert J¬x`K to its additive form 〈¬x`〉.

Our secure B2A function follows the standard realization [37]. Given two
parties the hospital (denoted as P0) and the medical service (denoted as P1),
the secure B2A(JxK) function is performed as follow:

1. P0 sets 〈e〉0 = JxK0, 〈f〉0 = 0, and P1 sets 〈e〉1 = 0, 〈f〉1 = JxK1;
2. P0 and P1 compute 〈x〉i = 〈e〉i + 〈f〉i − 2 · 〈e〉 · 〈f〉.

Secure ReLU function. For the ease of presentation, we show the secure ReLU
function attached on each neuron over single feature element x. Given the above
secure MSB extraction function and the shares of a single input feature 〈x〉, the
hospital (denoted as P0) and the medical service (denoted as P1) perform the
secure ReLU function as follows:

1. Secure MSB extraction: P0 and P1 invoke Algorithm 1 to get Jx`K← MSB(〈x〉).
2. Secure NOT: Pi computes NOT MSB J¬x`K = Jx`K + i.
3. Secure B2A: P0 and P1 run 〈¬x`〉 ← B2A(J¬x`K) to convert the boolean-

shared NOT MSB into additive shares.
4. Secure multiplication: P0 and P1 compute to produce the activation on each

neuron 〈x̄〉 = 〈¬x`〉 · 〈x〉.

Secure pooling layer. Within an n-width pooling window, the max pooling
layer max(x1, · · · , xn) can be transformed to the pairwise maximum operation
and realized based on the secure MSB(·) extraction via b← MSB(x1 − x2) and
max(x1, x2) = (1−b)·x1+b·x2. Given the above secure MSB extraction function,
the secure B2A function, and the shares of a set of activations 〈x1〉, ..., 〈xn〉 within
the n-width pooling window, the hospital (denoted as P0) and the medical service
(denoted as P1) perform the secure MaxPool function as follows:

1. For k ∈ [1, n− 1]:
2. Secure MSB extraction: P0 and P1 invoke Algorithm 1 to get the boolean

shares of MSB JbK← MSB(〈xk〉 − 〈xk+1〉).
3. Secure B2A: P0 and P1 run 〈b〉 ← B2A(JbK) to convert the boolean-shared

MSB into additive shares.
4. Secure branching: P0 and P1 use the MSB to choose the maximum value as

follows: 〈b′〉i = i−〈b〉i, where i ∈ {0, 1} is the identifier of party Pi, and then
compute 〈zk〉 = 〈b′〉 · 〈xk〉+ 〈b〉 · 〈xk+1〉. Pi sets 〈xk+1〉 := 〈zk〉.

5. Finally, Pi outputs 〈zn〉i as the shares of MaxPool result.

The average pooling layer b(x1+, ...,+xn)/nc can be directly computed over
additive secret shares via secure addition, where n is a cleartext hyper-parameter.
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5.3 Security Analysis

MediSC properly encrypts the medical data, NN model (i.e., the weights), and
any intermediate values as secret shares uniformly distributed in ring Z2` via
standard secret sharing techniques [9, 16]. It ensures that throughout the service
procedure, the hospital only learns the inference result and nothing else, while
the medical service learns nothing. Formally, we present the ideal functionality
and the formal security definition, and then prove the security of MediSC’s secure
NN inference protocol under the ideal/real world paradigm. We first define the
ideal functionality FSNNI capturing our targeted security properties.

Definition 1. The ideal functionality FSNNI of secure neural network inference
comprises the following parts:

- Input. The medical service submits the neural network model W to FSNNI.
The hospital submits the medical record X to FSNNI.

- Computation. Upon receiving the neural network modelW from the medical
service and the medical record X from the hospital, FSNNI performs neural
network inference and generates the prediction W(X).

- Output. The FSNNI returns the prediction W(X), and outputs nothing to
the medical service.

Given above ideal functionality, we formally provide the security definition.

Definition 2. A protocol Π securely realizes the FSNNI if it provides the follow-
ing guarantees in the presence of a probabilistic polynomial time (PPT) semi-
honest adversary with static corruption:

- Corrupted hospital. A corrupted and semi-honest hospital should learn
nothing about the service’s model weights and coefficients beyond the generic
architecture hyper-parameter. Formally, there should exit a PPT simulator

SimH that ViewΠH
c
≈ SimH(X,W(X)), where H is the hospital and ViewΠH

indicates the view of the semi-honest hospital in real-world protocol execution.
- Corrupted medical service. A corrupted and semi-honest medical service

should learn nothing about the values of the medical record X inputted by the

hospital. Formally, there should exist a PPT simulator SimS that ViewΠS
c
≈

SimS(W), where S is the medical service and ViewΠS indicates the view of the
semi-honest medical service in the real-world protocol execution.

Theorem 1. MediSC’s secure neural network inference protocol securely realizes
the ideal functionality FSNNI under Definition 2.

Proof. We show a simulator for the corrupted medical service or hospital, such
that the distribution of real protocol execution is computationally indistinguish-
able to the simulated distribution according to our security definition.

- Simulator for the corrupted hospital: Let SimBM denote the simulator
of Beaver’s multiplication procedure. Its emulated view is indistinguishable
from the real view of hospital H in the multiplication procedure. SimH chooses
an uniform random tape for the hospital.
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i) During preprocessing of Π, SimH produces and outputs the randomness r
$←−

Z2` to emulate the message in real protocol, i.e., W − a1. As both messages
are uniformly distributed in ring Z2` and given the security of additive secret
sharing, the hospital cannot distinguish the simulated message with the one
received from real protocol. The hospital calculates 〈X̃2〉0 = a0 · r + a2 and
sets u = a0.

ii) During online inference of Π, the corrupted hospital inputs the shares of
medical record X−u or protected activation shares 〈X̄i〉0−u and the shares
〈Xi+1〉0 and receives no messages for the linear layers. SimH works in a
dummy way by directly outputting inputs of the hospital, and thus the out-
put of SimH is identically distributed to the view of the semi-honest hospital.

For the non-linear layers, SimH produces 〈X̃i+1〉1
$←− Z2` and invokes SimBM

to conduct secure multiplication over 〈X̃i+1〉1 and 〈Xi+1〉0 whenever interac-
tions are involved in the secure ReLU function. SimH outputs the simulated
shares of activation returned from the secure ReLU function. SimH performs
the above operations for each layer. At the end, SimH outputs the simulated
last layer’s result shares 〈X̃L〉0, 〈X̃L〉1. The combination of these two shares
is uniformly distributed in ring Z2` , same as the result from the real protocol
execution. Thus, the output of SimH(X,W(X)) is indistinguishable to the
view ViewΠH of the semi-honest hospital.

- Simulator for the corrupted medical service: SimS chooses an uniform
random tape for the medical service.

i) During preprocessing of Π, the medical service inputs only the shares of
model W − a1 and does not receive any messages. SimS works in a dummy
way by directly outputting inputs of the medical service v = a1. Thus, the
output of SimS is identically distributed to the view ViewΠS of the semi-honest
medical service.

ii) During online inference of Π, SimS produces and outputs the randomness

r
$←− Z2` to simulate the real world message X − u (or X̄ − u). Given the

security of additive secret sharing, the medical service cannot distinguish
the simulated message with the one received from real protocol. For the

non-linear layers, SimS produces 〈X̃i+1〉0
$←− Z2` . Whenever interactions are

involved in the secure ReLU function, SimS invokes SimBM to conduct secure
multiplication over 〈X̃i+1〉0 and 〈Xi+1〉1 received from the medical service.
SimS outputs the simulated shares of activation returned from the secure
ReLU function. SimS performs the above operations for each layer. Since
all simulated intermediary messages are uniformly distributed in ring Z2` ,
and given the security of additive secret sharing and Beaver’s secure multi-
plication procedure, the output of SimS(W) is indistinguishable to the view
ViewΠS of the corrupted medical service.

6 Performance Evaluation

We implement a prototype of MediSC in Java and evaluate the prototype to
two computational nodes emulating the hospital and the medical service. Each
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Table 1. Performance of secure layer functions.

Secure layer Conv. BN ReLU MaxPool AvgPool
3×3 5×5 2×2 2×2

Time (ms) 1.25 2.16 1.74 22.7 31.2 0.05
Comm. (Bytes) 36 100 4 32 144 0
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Fig. 5. Performance of the secure FC layer. Left: time (ms). Right: bandwidth (MB).
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Fig. 6. Performance comparison of the secure non-linear layers. Left: time. Right: band-
width. Baseline: GC realizations.

computational node runs CentOS Linux 7 with Intel Xeon Gold 6150 CPU at
2.7GHz, 384GB RAM, Mellanox Spectrum network. In our experiment, we set
the data filed size to be 32-bit integers, i.e., the additively secret shared data
in ring Z232 . We follow most of the prior secure inference works [30, 22, 15] to
evaluate MediSC in fast networks, as the hospital and the medical service can
communicate via dedicated connections. We evaluate MediSC with two bench-
marking datasets (MNIST and CIFAR-10) with three NN models, and four real-
world medical datasets (Breast Cancer, Diabetes, Liver Disease, and Thyroid).
For training, we use PyTorch backend on a NVIDIA Tesla V100 GPU. More im-
plementation details and model architectures are available in Appendix Sec. A.

6.1 Microbenchmarks

Secure layer functions. We evaluate MediSC’s secure layer functions: the se-
cure convolutional (Conv.), fully connected (FC), batch normalization (BN),
ReLU, max pooling (MaxPool), and average pooling (AvgPool) layers. They are
the main building blocks in MediSC’s secure inference. For demonstration, we
choose to evaluate the Conv. with the commonly-used 3 × 3 and 5 × 5 filter
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Table 2. Performance summary of the benchmarking networks.

Dataset Model Time (s) Comm. (MB) Accu. Layers
Preprocessa Online Preprocessa Online

MNIST
M1 0.07 0.57 0.45 0.45 98% 3FC-2ReLU
M2 1.21 4.42 2.54 2.62 99% 4CONV/FC-8ReLU-2AP

CIFAR-10 C1 17.01 130.02 243.0 246.4 81% 8CONV/FC-8ReLU-2AP
a One-time cost during preprocessing.

Table 3. Performance summary of the medical applications.

Dataset/model Time (s) Comm. (KB) Accu. Layers
Preprocess Online Preprocess Online

Breast Cancer 0.10 0.20 3.13 4.13 93% 3FC-2ReLU-3BN
Diabetes 0.03 0.16 2.34 3.59 74% 3FC-2ReLU

Liver Disease 0.06 0.32 19 23 72% 3FC-2ReLU
Thyroid 0.28 0.64 49.2 55.5 98% 3FC-2ReLU-3BN

Table 4. Bandwidth (MB) comparison of MediSC with prior art.

Model M1 Model M2 Model C1

MiniONN 15.8 MiniONN 657.5 MiniONN 9272
CryptoNets 372.2 FALCON 62.1 FALCON 1278

XONN 4.29 XONN 32.13 XONN 2599
Chameleon 10.5 Gazelle (ReLU) 70 Chameleon 2650

Gazelle (ReLU) ∼5000
Delphi (ReLU) ∼5100

MediSC 0.9 MediSC 5.16 MediSC 489

Breast Cancer Diabetes Liver Disease

XONN 0.35 XONN 0.16 XONN 0.3
MediSC 0.007 MediSC 0.005 MediSC 0.04

sizes, and the MaxPool and AvgPool with 2 × 2 pooling window. As Table 1
benchmarks, all functions are demonstrated lightweight, where the linear and
non-linear layers can be finished within 2.5ms and 35ms respectively, consuming
less than 150 Bytes bandwidth. Fig. 5 plots the performance of the n × n fully
connected layer. The time (left figure) and bandwidth (right figure) ascend in
linear with the growth of the input and output feature size n.

Non-linear layers comparison with GC. Fig. 6 demonstrates that MediSC’s
design achieves 24×, 20× speedup and consumes 868×, 314× less communication
for the ReLU and MaxPool over the GC-based approaches. This GC baseline
realizes equivalent functionalities to ours. For a fair comparison, we use the
Java based GC framework [33] which integrates modern free-XOR and half-AND
optimizations. Such achievements validate that MediSC’s purely secret sharing
based design is lightweight and much more practical, compared with the prior
works involving GC [30, 31, 22, 28].
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Table 5. Performance breakdown of M1.
Layers Preprocess FC1 ReLU1 FC2 ReLU2 FC3

Time (s) 0.072 0.123 0.198 0.055 0.198 0.001
Comm. (MB) 0.45 0.383 0.0039 0.0625 0.0039 0.0048

Table 6. Performance breakdown of M2.
Layers Preprocess CONV1 ReLU1 AP1 CONV2 ReLU2 AP2 FC3 ReLU3 FC4

Time (s) 1.21 0.80 3.04 0.002 0.15 0.28 1.4E-4 0.029 0.087 0.024
Comm. (MB) 2.54 0.87 0.07 0 1.56 0.008 0 0.097 0.003 0.0038

Table 7. Performance breakdown of C1.
Layers Preprocess CONV1 ReLU1 CONV2 ReLU2 AP1 CONV3 ReLU3 CONV4

Time (s) 17.0 6.99 68.32 6.45 14.2 0.008 1.104 17.29 1.07
Comm. (MB) 243.0 6.75 2.0 144.0 0.5 0.0 36.0 0.5 36.0

Layers ReLU4 AP2 CONV5 ReLU5 CONV6 ReLU6 CONV7 ReLU7 FC1
Time (s) 4.3 0.002 0.21 4.35 0.17 4.35 0.056 1.08 0.003

Comm. (MB) 0.125 0.0 9.0 0.125 9.0 0.125 2.25 0.03 0.04

6.2 MediSC’s Protocol Performance

Evaluations on MNIST and CIFAR-10. We evaluate MediSC’s secure infer-
ence protocol on MNIST and CIFAR-10 datasets with three models, and summa-
rize the performance in Table 2. For MNIST, MediSC produces high-quality pre-
dictions with 0.47s (98%) and 4.42s (99%) online processing time for M1 (3FC-
ReLU) and M2 (4CONV/FC-ReLU-2AP). For CIFAR-10, MediSC consumes
2.1min to produce a 81% accurate prediction for the model C1 (8CONV/FC-
ReLU-2AP). Note that the costs of preprocessing are one-time overhead and are
determined by the model size.

Evaluations on medical datasets. To showcase MediSC’s applicability for
the real-world medical diagnostic applications, we deploy and evaluate our se-
cure NN inference protocol over the publicly available healthcare datasets. As
shown in Table 3, MediSC produces the robust diagnoses within 1s for all medical
applications and consumes <60KB. Besides, the workload during preprocessing
conducted mainly at the hospital side is light (within 0.3s and 50KB), which
confirms that MediSC is amiable for resource constrained devices.

Comparison with prior art. We compare MediSC’s performance with notable
prior secure NN inference works in Table 4 to demonstrate MediSC’s performance
efficiency. MediSC requires the least network resources among all other prior
works with up to 413× bandwidth saving for MNIST and up to 19× bandwidth
saving for CIFAR-10. For the medical datasets, MediSC achieves at least 10×
improvement over XONN, the notable prior work considering medical scenario.

For the SOTA - Delphi [28] (all ReLU version for keeping accuracy), it
consumes overall 5100MB while MediSC only needs 489MB, with a 10× im-
provement7. Such significant improvement stems from the fact that MediSC only
involves lightweight secret sharing based secure computation through out the
whole service procedure, while Delphi involves the use of heavy homomorphic
encryption and garbled circuits. Regarding the overall runtime, we note that it
is not fair to make a direct comparison with results reported in [28] as Delphi is

7 Preprocessing: 243MB in MediSC and 4915MB in Delphi.
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Table 8. Performance breakdown of Breast Cancer.
Layers Preprocess FC1 BN1 ReLU1 FC2 BN2 ReLU2 FC3 BN3

Time (ms) 100 7 27 110 75 1.8 5.4 0.2 0.2
Comm. (KB) 3.13 1.84 0.062 0.49 1 0.0625 0.5 0.12 0.007

Table 9. Performance breakdown of Diabetes.
Layers Preprocess FC1 ReLU1 FC2 ReLU2 FC3

Time (ms) 62.2 38.5 146.3 47.8 92.9 0.3
Comm. (KB) 18.94 2.50 2.00 16.00 16.00 0.50

Table 10. Performance breakdown of Liver Disease.
Layers Preprocess FC1 ReLU1 FC2 ReLU2 FC3

Time (ms) 34.8 6.1 102.4 4.1 47.3 0.2
Comm. (KB) 2.05 0.63 0.62 1.54 0.63 0.16

Table 11. Performance breakdown of Thyroid.
Layers Preprocess FC1 BN1 ReLU1 FC2 BN2 ReLU2 FC3 BN3

Time (ms) 287.2 46.1 21.7 248.8 28.0 21.1 262.8 27.3 0.3
Comm. (KB) 49.23 8.20 0.39 3.13 39.06 0.39 3.13 1.17 0.01

implemented in a different programming language (Rust) with significant opti-
mizations and acceleration from GPU computing. Our performance results are
not based on such optimizations.

It is worth noting that secure evaluation of non-linear layers is the perfor-
mance bottleneck in secure neural network inference [28]. For evaluation of the
original ReLU function, Delphi adopts a GC-based approach. Note that we have
provided above in Fig. 6 a (fair) comparison between our design and the GC-
based approach, which has demonstrated a significant performance boost of our
design over the GC-based approach (24× in runtime and 868× in communica-
tion). On another hand, even when a direct (unfair) comparison is made with
their reported runtime driven by aforementioned significantly optimized and so-
phisticated implementations, the overall runtime of MediSC with much simplified
implementations is still comparable (147s in MediSC against 140s in Delphi).
Performance breakdown. The breakdown of time and bandwidth costs of the
preprocessing and each layer during online inference are given in this section.
Table 5 and Table 6 report the performance breakdown of M1, M2 for MNIST.
Table 7 reports the performance breakdown of C1 for CIFAR-10. Table 8, Ta-
ble 9, Table 10 and Table 11 report the performance breakdown of Breast Cancer,
Diabetes, Liver Disease, and Thyroid.

7 Conclusion
In this paper, we present MediSC, a secure and lightweight NN inference system
towards secure intelligent medical diagnostic services. Our protocol fully resorts
to the lightweight additive secret sharing techniques, free of heavy cryptographic
operations as seen in prior art. The commonly-used non-linear ReLU and max
pooling layer functions are well supported in a secure and efficient manner. With
MediSC, the privacy of the medical record of the hospital and the NN model of
the medical service is provably ensured with practical performance.
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A Further Implementation Details

A.1 More Details of Implementation Setting

MediSC is implemented in Java. Recall that MediSC’s secure NN inference pro-
tocol is computed in the secret sharing domain over ring Z2` , i.e., all real-valued
model weights are converted into `-bit signed fixed-point integers and secretly
shared in Z2` . In MediSC, we follow the state-of-the-art work [28] to choose
the ring size as Z232 , a 32-bit ring by the modulus 4294967296. To represent
the signed integers, we split the ring into two halves, where the lower-half ring
[0, 231−1] represents the non-negative values and the upper-half ring [231, 232−1]
represents the negative values. In this way, both the sign and the secret value
is well protected. Besides, to convert the real-valued model weights to 32-bit
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fixed-point integers, we scale and quantize the weight with a scaling factor s to
represent the bit length of the fractional part. For M1, M2, and C1, the factor
is set as 1024, 128, and 64, respectively. For all medical datasets, the factor is
set as 1024.

Multiplication over two fixed-point integers can overflow the capacity of the
ring Z2` , since the fractional part is increased to 2s bits in the resulting product.
To assure the correctness, all intermediate results after multiplying over two
shares should be rescaled down by 2s before subsequent operation. We follow
prior works [28, 32] to adopt a secure local truncation scheme proposed in the
work [29], which simply discard the last s fractional bits to adjust the product
to ` bits.

A.2 Training Details

We provide the detailed setting of training over plaintext datasets. Recall that
we train the models M1 and M2 on MNIST, the model C1 on CIFAR-10, and
the models over four publicly available medical datasets: Breast Cancer [1], Di-
abetes [2], Liver Disease [3] and Thyroid Disease [4]. Our training procedure is
executed on NVIDIA Tesla V100 GPU with PyTorch backend. We adopt the
SGD for M1, M2, C1, and Breast Cancer, and Adam optimizer for Diabetes,
Liver Disease, and Thyriod. They are with adaptive learning rate with cosine
learning rate decay every 50 epoches. For all datasets, all image pixels and the
medical features are normalized to integers in [0, 255]. In this way, the hospital’s
inputs do not need to be preprocessed in our secure NN inference protocol.

Table 12. Summary of training settings.
Learning rate Weight decay Momentum Optimizer Epoch Batch size

MNIST (M1, M2)

1× 10−3 5× 10−4 0.9 SGD 600 128
CIFAR-10 (C1)

1× 10−3 5× 10−4 0.9 SGD 600 128
Breast Cancer

1× 10−3 5× 10−4 0.9 SGD 9000 453
Diabetes

1× 10−5 - - Adam 50000 615
Liver Disease

1× 10−4 - - Adam 50000 467
Thyroid

1× 10−5 - - Adam 30000 3772

A.3 More Details of Model Architecture

In this section, we present the detailed model architectures used in our paper.
The models M1 and M2 are trained on MNIST. In general, M1 is a Multi-Layer
Perception consisting of 3 fully connected (FC) layers with ReLU activation,
which has been used in prior works [19, 30, 15, 22, 31]. The architecture of M1 is
summarized in Table 13. As shown in Table 14, M2 comprises 3 convolutional
(CONV) layers with ReLU, 2 average pooling (AP) layers and an FC layer,
which has been adopted in prior works [22, 19, 30, 27]. For CIFAR-10, the model
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C1 (minionn network) consists of 7 CONV layers with ReLU, 2 AP layers and
an FC layer as shown in Table 15. Is has been adopted in prior works [22, 31, 19,
30, 27] for a benchmarking evaluation. Table 16, table 17, and table 18 report
the architectures of the models on Breast Cancer, Diabetes, and Liver Disease,
respectively. They have been adopted in prior work [30]. Table 19 reports the
model architecture evaluating on Thyroid disease.

Table 13. Model architecture of M1.
Layers Padding Stride
FC (input: 784, output: 128)+ ReLU - -
FC (input: 128, output: 128)+ ReLU - -
FC (input: 128, output: 10) - -

Table 14. Model architecture of M2.
Layers Padding Stride
CONV (input: 1× 28× 28, kernel: 1× 16× 5× 5 feature: 16× 24× 24) + ReLU - 1
AP (input: 16× 24× 24, window: 16× 2× 2 output: 16× 12× 12) - 2
CONV (input: 16× 12× 12, kernel: 16× 16× 5× 5 feature: 16× 8× 8) + ReLU - 1
AP (input: 16× 8× 8, window: 16× 2× 2 output: 16× 4× 4) - 2
FC (input: 256, output: 100) + ReLU - -
FC (input: 100, output: 10) - -

Table 15. Model architecture of C1.
Layers Padding Stride
CONV (input: 3× 32× 32, kernel: 3× 64× 3× 3 feature: 64× 30× 30) + ReLU 0 1
CONV (input: 64× 32× 32, kernel: 64× 64× 3× 3 feature: 64× 32× 23) + ReLU 0 1
AP (input: 64× 32× 32, window: 64× 2× 2 output: 64× 16× 16) - 2
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
CONV (input: 64× 16× 16, kernel: 64× 64× 3× 3 feature: 64× 16× 16) + ReLU 0 1
AP (input: 64× 16× 16, window: 64× 2× 2 output: 64× 8× 8) - 2
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 64× 64× 3× 3 feature: 64× 8× 8) + ReLU 0 1
CONV (input: 64× 8× 8, kernel: 16× 64× 3× 3 feature: 16× 8× 8) + ReLU 0 1
FC (input: 1024, output: 10) - -

Table 16. Model architecture of Breast Cancer.
Layers Padding Stride
FC (input: 30, output: 16) + BN + ReLU - -
FC (input: 16, output: 16) + BN + ReLU - -
FC (input: 16, output: 2) + BN - -

Table 17. Model architecture of Diabetes.
Layers Padding Stride
FC (input: 8, output: 20) + ReLU - -
FC (input: 20, output: 20) + ReLU - -
FC (input: 20, output: 2) - -

Table 18. Model architecture of Liver Disease.
Layers Padding Stride
FC (input: 10, output: 32) + ReLU - -
FC (input: 32, output: 32) + ReLU - -
FC (input: 32, output: 2) - -

Table 19. Model architecture of Thyroid.
Layers Padding Stride
FC (input: 21, output: 100) + BN + ReLU - -
FC (input: 100, output: 100) + BN + ReLU - -
FC (input: 100, output: 3) + BN - -


