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Securely Outsourcing Neural Network Inference
to the Cloud with Lightweight Techniques

Xiaoning Liu, Yifeng Zheng, Xingliang Yuan, and Xun Yi

Abstract—Neural network (NN) inference services enrich many applications, like image classification, object recognition, facial
verification, and more. These NN inference services are increasingly becoming an essential offering from cloud computing providers,
where end-users’ data are offloaded to the cloud for inference under a customized model. However, current cloud-based inference
services operate on clear inputs and NN models, raising paramount privacy concerns. Individual user data may contain private
information that should always remain confidential. Meanwhile, the NN model is deemed proprietary to the model owner as model
training requires substantial resources. In this paper, we present, tailor, and evaluate Sonic, a lightweight secure NN inference service
delegated in the cloud. Sonic leverages the cloud computing paradigm to fully outsource the secure inference, freeing end devices and
model owners from being actively online for assistance. Sonic guards both user input and model privacy along the whole service flow.
We design a series of secure and efficient NN layer functions purely using lightweight cryptographic primitives. Extensive evaluations
demonstrate that Sonic achieves up to 60× bandwidth saving in online inference compared to prior art.

Index Terms—Secure outsourcing, cloud computing, privacy preservation, neural network inference
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1 INTRODUCTION

Neural network inference services provide ready-made
intelligence for end-user applications and help enterprises
improve their business, ranging from image classification to
face detection [1]. With the wide adoption of cloud com-
puting in various domains (e.g., [2], [3], [4]), these inference
services have rapidly become an appealing offering from
cloud service providers to empower many applications.
Consider a typical application of face detection, where an
end-user wishes to evaluate a personal photo under an
enterprise’s neural network. Due to the well-understood
benefits, the enterprise takes advantage of cloud computing
service (like Google Vision [5]), where both the end-user
photo and model are offloaded to the cloud. The inference
service takes place on the cloud which then returns the
result to the end-user.

Such practices seem appealing, yet raises critical privacy
concerns, posing hurdles to the practical deployment of
the service. The raw user data processed by these services
often carry private information, such as biometrics and loca-
tions [6]. To ensure individuals’ privacy, such data should be
kept confidential at any time and not be disclosed to cloud
in cleartext. Meanwhile, NN models are deemed as intel-
lectual properties and embed traces of (sensitive) training
data [7], [8]. Privacy protection of the private user data and
proprietary models is thus of paramount importance and
necessary in pushing forward the practical deployment of
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Fig. 1. A secure CNN-powered inference in the cloud. The lock indicates
that the data is deployed in encrypted form.

inference services in the cloud [9], [10].
Towards this pressing need, there have been growing

research endeavors on leveraging generic cryptographic
techniques (such as garbled circuits and homomorphic en-
cryption) to build secure NN inference systems [11], [12],
[13]. These systems proceed by encrypting user input data
and/or an owner’s model, and execute NN inference over
encrypted data. Unfortunately, they are still unsatisfactory
for practical deployment. Specifically, during the online se-
cure inference, they all need to involve the aforementioned
heavyweight cryptographic techniques, and some of them
require active user aids throughout the whole inference
procedure. Namely, end-users need to continually engage
in online interactions and have symmetric computing capa-
bilities to the server, in the case that the server holds the
plaintext model. These limitations are further aggravated in
resource-constrained mobile or embedded user devices.

In light of above observations, in this paper, we propose,
implement, and evaluate Sonic, a lightweight secure NN
inference system running in the cloud. Sonic is designed
to support Convolutional Neural Networks (CNN), one of
the most popular and powerful deep learning models. As
shown in Fig. 1, Sonic offloads the entire secure inference
computation to the cloud. Using such a system frame-
work, Sonic mediates the resource limitation of the mobile
user and the privacy-invasive cloud: it frees the resource-
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constrained mobile user from always staying online; and
allows the model owner to dynamically fine-tune their
service with an updated NN model without reinstalling the
application. At the same time, both the private user data
and proprietary CNN model are well protected against the
untrusted cloud. In particular, we design a delicate secure
inference protocol purely from lightweight secret sharing
techniques to foster a low-latency service with judicious
usage of network resources. Our contributions can be sum-
marized as follows.
• We design a secure cloud-based outsourced service
Sonic that supports lightweight secure CNN inference,
with protection of both the private user data and the
proprietary CNN model. By combining the advance-
ments from system, cryptography, and machine learn-
ing literature, Sonic enables a full-fledged cloud ser-
vice framework that can support generic CNN models
and provide high-performance inference service.

• We devise a series of efficient secure layer functions
fully resorting to lightweight secret sharing. They are
essential building blocks for CNN inference, including
the secure convolutional layer (SCONV), secure batch
normalization (SBN), secure ReLU activation (SReLU),
and secure max pooling layer (SMP). We decompose
these secure layer functions into smaller and compos-
able cryptographic gadgets, and carefully devise each
gadget to optimize the performance of secure NN in-
ference on the cloud.

• We integrate the developed secure functionalities and
apply them to four realistic CNN models over bench-
marking datasets for extensive evaluation. Results val-
idate the efficiency of Sonic, showing that Sonic pro-
duces a prediction in 0.7s on MNIST with 97% accu-
racy and in 1.5min on CIFAR-10 with 80% accuracy.
Compared with prior art, Sonic can achieve up to 60×
bandwidth saving in the online inference procedure.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 presents the sys-
tem architecture and threat model. Section 4 introduces
the proposed secure inference protocol. Section 5 analyzes
the security. Section 6 presents the experiments. Section 7
investigates the related work. Section 8 concludes this paper.

2 PRELIMINARY: ADDITIVE SECRET SHARING

We now introduce the core cryptographic primitive used in
Sonic— additive secret sharing. Additive secret sharing [14]
protects an `-bit secret value x by additively splitting it in
the ring Z2` as 〈x〉A0 and 〈x〉A1 such that 〈x〉A0 + 〈x〉A1 ≡ x
(mod 2`). Each individual secret share is a uniformly dis-
tributed random value in Z2` and can perfectly hide the
information about x. Given the shares of two secret values
are x and y, and two parties (denoted as P0 and P1) join the
secure computation that supply and obtain corresponding
shares of the values. Some computation among two parties
can be supported as follows. Firstly, addition/subtraction
over shares (〈z〉Ai = 〈x〉Ai ± 〈y〉Ai ) and multiplication by a
public value (〈z〉Ai = η · 〈x〉Ai ) can be efficiently evaluated
by each party Pi (i ∈ {0, 1}) at local with no interaction.

Multiplication over two shares (〈z〉A = 〈x〉A · 〈y〉A)
requires the assistance of a pre-computed secret-shared

TABLE 1
Key Notations

Notation Description
X, X,x Input/activation tensor, matrix, and vector.
W,W,w Weight tensor, matrix, and vector.
µ, δ, γ, β Batch normalization parameters: the running

mean, running variance, scale, and shift.
`, n Bit length ` and vector length n.
xk,xk The k-th element of vector x; The k-th vector.
∈R Uniformly random sampling from a distribution
〈x〉Ai Arithmetic shares of value x held by server i
JxKi Boolean shares of value x held by server i
〈x〉Ai ± 〈y〉Ai Addition/subtraction over arithmetic shares
〈x〉A · 〈y〉A Multiplication over arithmetic shares
JxKi + JyKi Bitwise XOR over Boolean shares
JxK · JyK Bitwise AND over Boolean shares

multiplication triple (a, b, c) [15], where c = a · b. Such
triples are data independent and can be generated offline
by a third party [16], [17]. As such, Sonic assumes the
secret-shared triples are already available during the online
service. With the secret-shared triple, secure multiplica-
tion can be supported as follows. Each party Pi first sets
〈e〉Ai = 〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai . Then both
parties interact to reconstruct e and f . Party Pi then sets
〈z〉Ai = i · e · f + f · 〈a〉Ai + e · 〈b〉Ai + 〈c〉Ai .

It is noted that for the special case l = 1, additive
secret sharing is over Z2. In this case, the above addition
and multiplication operations are replaced with boolean
operations XOR (⊕) and AND (∧) respectively. We denote
the boolean sharing of a secret value x in Z2 as (JxK0, JxK1).
We summarize the key notations in Table 1.

3 SYSTEM OVERVIEW

3.1 Architecture
Fig. 2 shows Sonic’s system architecture. There is a cloud-
based service platform operated by two distinct servers S0

and S1 from independent cloud providers (like Amazon
Rekognition [18] and Google Vision [5]) to jointly provide
efficient secure neural network inference services. Through
the service, a model owner holding a proprietary CNN
model can deploy the model in protected form on the
cloud, which can then provide inference services without
seeing the model in cleartext. In practice, the model owner
can be a mobile application developing company who
has spent massive resources in training the model for a
certain application like image recognition with its private
customers’ data. Sonic supports a mobile user, who runs
an ML-powered mobile application collecting user data, to
get inference results without disclosing the confidential or
sensitive user data. Sonic’s cloud-aided architecture frees
the resource-constrained mobile user from storing large
models on local device or continuously engaging in the se-
cure inference. Meanwhile, it facilitates the model owner to
dynamically fine-tune its service, where the neural network
model can be regularly updated without republishing the
mobile application.
Execution flow. At a high level, Sonic works as follows:
The model owner protects a pre-trained CNN model W
by the secret sharing technique, generating secret shares
〈W〉A0 and 〈W〉A1 . Then, 〈W〉A0 and 〈W〉A1 are deployed on
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Fig. 2. System architecture.
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Fig. 3. Sonic’s secure layer functions.

the cloud servers S0 and S1, respectively. Once the mobile
user’s request arrives at the user interface (on the left of
Fig. 2), Sonic protects the raw input (e.g., facial image) as
secret-shared tensors 〈X〉A0 and 〈X〉A1 and feeds them into
the secure service hosted in corresponding cloud servers.
The cloud servers run Sonic’s secure inference procedure
collaboratively (green box in Fig. 2) and send the secret-
shared output 〈z〉A0 and 〈z〉A1 to the mobile user. The mobile
user then combines the shares and produces the inference
result z labeling the class of user input.

3.2 Threat Model and Privacy Goals
We consider that the threats in Sonic mainly come from
the engagement of the cloud servers that jointly provide
the secure inference service. Following prior works in the
two-server model [16], [19], [20], we assume that the cloud
servers are semi-honest and non-colluding. They will hon-
estly follow our protocol, yet attempt to infer private in-
formation beyond their access rights. The rationale behind
such assumption is that cloud providers are well-established
companies and not willing to harm their reputation, thus
avoiding behaving maliciously and collusion [21]. It is
noted that such multi-server model has become increasingly
appealing in many industrial projects as well. Examples
include privacy-preserving ML frameworks like Facebook’s
CrypTen [22] and Cape Privacy’s TFEncrypted [23].

Sonic aims to ensure that both the private data of the
mobile user and the (trained) parameters of the model are
hidden from the cloud servers. Through interaction with
the cloud servers, the mobile user only learns the inference
result and nothing else. Consistent with prior works [11],
[13], [19], [20], Sonic does not hide the architecture infor-
mation (hyperparameters) of the model, such as dimension
of weight tensor and number of layers. Last, like most prior
works on secure inference [11], [12], [13], [19], [20], [24],
Sonic does not aim to protect against adversarial machine
learning attacks. Such attacks [7], [8], [25], [26] may attempt
to exploit the inference procedure as a blackbox oracle to
infer information about the training dataset or the model.
Mitigating these adversarial ML attacks is orthogonal to
Sonic’s security scope, as per the definition of secure multi-
party computation. Defenses against these attacks are com-
plementary and active research areas, such as differentially
private learning [27], [28], [29], [30], modification of NN
models [25], [31], [32], and query auditing [33], [34]. We refer
the readers to Section 7.3 for more detailed discussion.

4 OUR PROPOSED DESIGN

In this section, we present a series of secure layer functions
as the main building blocks of secure NN inference in
Sonic. Fig. 3 depicts the typical computational blocks in
CNN and their secure counterparts, including the secure
convolutional layer (SCONV), the secure batch normaliza-
tion (SBN), the secure ReLU activation (SReLU), and the
secure max pooling layer (SMP). These secure layers are or-
ganized in pipeline, where each layer receives an encrypted
input and produces a desired encrypted output to the next
layer. Sonic decomposes each layer into smaller and com-
posable units (i.e., cryptographic gadgets) while preserving
its security guarantees. Each unit is customized to be ami-
able for secret sharing techniques, so as to enable efficient
and low-bandwidth execution of secure NN inference. For
the most challenging ReLU and Max Pooling layers, we
leverage insights from the digital circuit design literature
and construct a highly efficient secure comparison gadget
purely resort to lightweight boolean sharing techniques.
With all these designs, our experiment results (Section 6)
show that Sonic can achieve up to 60× bandwidth saving
compared with prior art.

4.1 Setup

Sonic’s secure designs proceed in the ring Z2` . Initially, all
mobile user input and model weights need to be converted
to integers, so that they can be secretly shared over Z2` .
Sonic adopts the fixed-point representation to handle real-
valued numbers. As Fig. 4 shows, each real-valued data
x is rounded and scaled (with a factor q) into an integer
x̄ mod 2`, where a two’s complement is used to represent
the negative values. The most significant bit (MSB) indi-
cates the sign (1→negative; 0→non-negative). Such a signed
integer x̄ can be shared over Z2` , where the lower-half
[0, 2`−1 − 1] represents the non-negative values and the
upper-half [2`−1, 2`−1] represents the negative values. Both
data value and its sign are well protected. Multiplication
over two fixed-point numbers can lead to a 22q scaling
(2q fractional bits) for the resulting product, which exceeds

1 1 1 0 1 1 0 0
�̅� = 2! − 2" ⋅ 2.5 = 236
𝑥 = −2.5

+/−
Integer bits Fractional bits

0 0 0 0 0 0 1 0
�̅� = 2" ⋅ 0.2555 = 2
𝑥 = 0.2555

+/−
Integer bits Fractional bits

Fig. 4. Examples of the fixed-point representation for signed number,
where ` = 8, q = 3.
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the bit-length ` of the ring Z2` . To ensure the computation
correct, all intermediate results should be scaled down by 2q

before proceeding the succeeding operation. Sonic adopts
a secure local truncation scheme [19] which simply discards
the last q-bit fractional part to adjust the product to ` bits.
Similar treatment also appears in prior works [13], [35].

Based on this fixed-point representation, the client con-
verts its task-specific raw input to a tensor X and produces
additive shares of every data point. It then dispatches the
corresponding shares to cloud servers S0 and S1 which
then pad these shares with 0 to fit with the kernel size. The
model owner produces additive shares of its CNN model
tensor W. To support efficient secure batch normal func-
tion, the model owner first derives two set of parameters
ε1 = γ/δ, ε2 = β − γµ/δ from the BN parameters: the
running mean µ, the running variance δ, the scale γ, the
shift β. It then produces additives shares of its CNN model
tensor W (kernels and ε1, ε2). To this end, the model owner
deploys the shares of weights to the cloud servers.

4.2 Secure Linear Layers

In this section, we present the secure realizations of linear
layers, i.e., the secure convolutional layer (SCONV) and the
secure fully connected layer (SFC). Their functionality can
be expressed as

z = f(x,w) + bias;

f(x,w) = VDP(x,w) = Σnk=1wk · xk, (1)

which work over the n-dimensional layer input vector x (or
the activation vector for hidden layers) and weight vector
w, plus the bias attached on each neuron. In Sonic, we
introduce the main building block, i.e., the secure VDP func-
tion (SVDP), to realize the above Eq. 1 in the secret sharing
domain. Here, we make an important observation from the
known literature [36] and open source framework [37] that
the bias can be removed if applying batch normalization,
because the shift β in BN achieves the same effect as the
bias. Likewise, we set the bias as 0 to avoid the involvement
of real-valued bias and make our design more compatible
with the secret sharing techniques.
Secure VDP. The secure VDP function (SVDP) computes
the convolution operation for conventional CNNs in Eq. 1.
It takes as input a set of secret shares of input vector as 〈x〉Ai
and weight vector as 〈w〉Ai , respectively, and outputs the
secret shares of their VDP result 〈z〉Ai , where i ∈ {0, 1} is
the identifier of the two cloud servers S0, S1. The vector x
can be the activation output from previous ReLU function
or represent the raw input of user. The two cloud servers S0

and S1 perform SecVDP(〈x〉Ai , 〈w〉Ai ) as follows:
1) For k ∈ [1, n], S0 and S1 jointly compute the element-

wise multiplication 〈zk〉A = 〈xk〉A · 〈wk〉A.
2) Si locally sums the products 〈z〉Ai =

∑n
k=1〈zk〉Ai .

4.3 Secure Batch Normalization

Batch normalization [36] performs element-wise normaliza-
tion on each neuron’s feature a via

â = (a− µ)/σ, z = γ · â+ β, (2)
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Fig. 5. An overview of the SReLU function.

where µ is the running mean and σ is the non-zero running
variance of the training dataset; and γ, β are the scale and
shift parameters. The secure batch normalization function
(SBN) is applied on each neuron after the secure linear
function. It takes as input the secret shares of feature 〈x〉A
outputted from linear function, and outputs the shares of the
normalized feature 〈z〉A. We observe that its functionality in
Eq. 2 can be transformed to a simpler problem

z = ε1 · x+ ε2, (3)

where ε1 =
γ

δ
, ε2 = β − γµ

δ
.

Since ε1, ε2 are derived from the BN parameters and in-
dependent of inference input, they can be pre-calculated
by model owner in the setup phase. With preprocessing,
only Eq. 3 is required to be calculated. Such a conversion
circumvents the complex division operations over secret
shares in Eq. 2, resulting in a functionality more compatible
to secret sharing techniques. With above observation, given
the pre-generated shares of two parameters 〈ε1〉A, 〈ε2〉A,
the SBN(〈x〉A, 〈ε1〉A, 〈ε2〉A) performs as follows: S0 and
S1 jointly compute the normalized feature on each neuron
〈z〉A = 〈x〉A · 〈ε1〉A + 〈ε2〉A.

4.4 Secure ReLU Function

The secure ReLU function (SReLU) is applied on each
neuron and proceeds with the functionality ReLU(x) =
max(x, 0) in the encrypted domain. Prior work solving
the problem is either relying on the heavyweight garbled
circuit techniques [11], [19] or utilizing the linear activation
functions (e.g., square function) [12], [13], [38]. In essence,
the former requires intensive communication cost that is
unsuitable for real-world mobile application deployment.
Using a linear activation could be problematic and violates
the original intention to apply activation function, i.e., intro-
ducing non-linearity. This is because an NN with all linear
functions has limited power to handle complex inference
tasks and makes the training process hard to converge
during backpropagation [39].
Overview. In Sonic, we rely on a new highly efficient
realization of the secure ReLU function in the secret sharing
domain. We first note that the MSB indicates the sign bit
with the fixed-point representation, which would be one of
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a non-negative feature x, and would be 0 of a negative x. We
then transform the ReLU function into an MSB extraction:

max(x, 0)
trans−−−→ ¬MSB(x) · x =

{
1 · x if x ≥ 0

0 · x if x < 0
. (4)

Based on Eq. 4, we decompose the SReLU function into four
atomic operations. As summarized in Fig. 5, it comprises the
secure MSB(·) gadget, the secure NOT gadget, the secure B2A(·)
gadget, and the secure multiplication gadget. The secure MSB
gadget takes as input the arithmetic shares of normalized
feature 〈x〉A, and extracts the boolean-shared MSB Ja`K. The
secure NOT conducts the bitwise-NOT to produce the shares
of NOT MSB Jā`K.

Prior to multiplying with normalized feature x, the secure
B2A gadget needs to be applied, converting the boolean
shared NOT MSB Jā`K to its arithmetic form 〈ā`〉A. The
reason is that Jā`K is projected to ring Z2 via Jā`K0 + Jā`K1

(mod 2), whereas the arithmetic-shared feature 〈x〉A is
projected to Z2` via mod 2`. These two shares cannot be
naively multiplied with different moduli. The last secure
multiplication produces the shares of ReLU result 〈z〉A, given
the shared NOT MSB and the feature 〈x〉A.

Below we expatiate on the essential cryptographic gad-
gets of secure ReLU function in Sonic: the secure MSB gadget
and the secure BA2 gadget.

4.4.1 The Construction of Secure MSB Extraction

The secure MSB(·) gadget is used to securely extract
the MSB of the arithmetic-shared data and to produce a
boolean-shared MSB as the output. Suppose there are secret
shares 〈x〉A0 and 〈x〉A1 of a secret value x, with the bit length
l. Let x = {x`, ..., x1}, a = {a`, ..., a1}, and b = {b`, ..., b1}
denote x, 〈x〉A0 , 〈x〉A1 with their corresponding bit strings
respectively, such that x = a + b (mod 2`). The key ob-
servation is that the difference between the sum (+) of bit
strings of a, b and the bitwise-XOR (⊕) of the bit strings of
a, b is equal to the carry bits c`, . . . , c1. For example, given
x = 13, a = 6, b = 7, the carry bits (“0110”) are equal to bit

strings of (a + b) (“1101”) XOR with a ⊕ b (“1011”). Then
extracting MSB x` = c` + a` + b` is converted to calculating
the carry bit c` via an `-bit full adder.

To do so, an effective and notable approach [16] is to
use the ripple carry adder (RCA) to implement the `-bit
full adder in serial. As Fig. 6 demonstrates, the fan-out
carry bit (co) of each full adder is propagated as fan-in
(ci) of the succeeding full adder. This serial implementa-
tion introduces an O(`) propagation delay, resulting in 2`
rounds of communication (computing AND operations over
boolean shares) between the two cloud servers in the secret
sharing domain. The linear round complexity could result
in long processing latency when the two cloud servers are
geographically separated and the network delay is high.

Instead, we observe an efficient realization of full adder
logic from the digital circuit design literature [40], called
the parallel prefix adder (PPA). In comparison to RCA,
the PPA can extract the MSB in logarithm communication
rounds O(log `). We note that leveraging parallel adder
(the tree-based PPA and its other variants) to efficiently
realize the secure MSB extraction has also been explored
in independent and concurrent works [41], [42], [43], under
different contexts.

The usage of the PPA for secure MSB extraction in
Sonic is introduced as follows. In the PPA, a signal tuple
(Gi, Pi) can be pre-generated in parallel via

Gi = ai · bi, Pi = ai + bi, (5)
where Gi is called the carry generate signal and Pi is called
the carry propagate signal. Given these two prefixes, PPA
reformulates the full adder ci+1 = (ai · bi) + ci · (ai + bi)
to compute the carry bit via ci+1 = Gi + (ci · Pi). This
reformulation allows a carry to be derived as follows:
c` = G`−1 + (P`−1 ·G`−2) + ...+ (P`−1...P2 ·G1), (6)

without waiting for the previous carry propagated through
all previous adders. Afterwards, PPA properly organizes
the computation of Eq. 6 in parallel to reduce the la-
tency in O(log `) rounds. As demonstrated in Fig. 7, PPA
forms a log `-layer binary tree and attaches a binary op-
erator � on each node. This binary operator is defined
as: given two carry generate signal and propagate signal
tuples (Gin1 , Pin1); (Gin2 , Pin2), and output signal tuple
(Gout, Pout), it performs

(Gout, Pout) = (Gin1
, Pin1

) � (Gin2
, Pin2

) (7)
Gout = Gin2

+Gin1
· Pin2

Pout = Pin2
· Pin1

.

PPA recursively computes the above binary operation over
the signal tuples at the leaf nodes (layer 0), and propagates
the resulting tuples as input to the next layer’s nodes, until
reaching the root node (the node corresponding to tuple
(P 3

1 , G
3
1) in Fig. 7). At the end, the most significant carry

bit c` can be produced via Eq. 6 and the MSB is calculated
by x` = c` + a` + b`. Based on above philosophy, the details
of the secure MSB(·) gadget are presented in Fig. 8.

4.4.2 Secure B2A Gadget
The secure B2A gadget converts a boolean-shared data JxK
into its arithmetic share 〈x〉A. Given two cloud servers
S0, S1, the secure B2A(JxK) gadget performs as follow:
1) S0 sets two variables 〈a〉A0 = JxK0, 〈b〉A0 = 0;
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Input: Arithmetic shares of integer feature 〈x〉A ∈ Z2` .
Output: Boolean shares of MSB Jx`K ∈ Z2.
Decompose x to bit strings:

1) S0 decomposes 〈x〉A0 to a bit string a`, ..., a1;
S1 decomposes 〈x〉A1 to a bit string b`, ..., b1;

2) For each k ∈ [1, `]:
S0 sets JakK0 = ak, JbkK0 = 0, JwkK0 = ak;
S1 sets JakK1 = 0, JbkK1 = bk, JwkK1 = bk;

Compute signal tuples (G,P ) in Eq. 5:
3) For each k ∈ [1, `]:
S0 and S1 set JGkK = JakK · JbkK, JPkK = JakK⊕ JbkK;

Compute PPA tree based on Eq. 7:
4) Layer L = 0

For k ∈ [1, `], Si sets (JG0
kK, JP

0
k K) = (JGkK, JPkK).

5) Layer L = 1
Si sets dummy node (JG1

kK, JP
1
k K) = (JG0

kK, JP
0
k K);

For k ∈ [2, `/2]:
Let in1 = 2k − 2, in2 = 2k − 1;
(JG1

kK, JP
1
k K) = (JG0

in1
K, JP 0

in1
K)� (JG0

in2
K, JP 0

in2
K);

6) Layer L = 2, ..., log `
For k ∈ [1, `/2L]:
Let in1 = 2k − 1, in2 = 2k;
(JGLk K, JPLk K) = (JGL−1

in1
K, JPL−1

in1
K)� (JGL−1

in2
K, JPL−1

in2
K);

Compute MSB:

7) S0 and S1 set Jc`K = JGlog `
1 K, Jx`K = Jw`K + Jc`K;

Fig. 8. The secure MSB(·) gadget.

2) S1 sets two variables 〈a〉A1 = 0, 〈b〉A1 = JxK1;
3) S0 and S1 set 〈x〉A = 〈a〉A + 〈b〉A − 2 · 〈a〉A · 〈b〉A.

4.4.3 Realization of Secure ReLU function
Given above secure MSB gadget and secure B2A gadget,
and the arithmetic share of input feature 〈x〉A, the secure
ReLU function SReLU(〈x〉A) performs as follows:
1) Secure MSB extraction: S0 and S1 run to get the MSB

Ja`K← MSB(〈x〉A).
2) Secure NOT: Si sets the NOT MSB Jā`K = Ja`K + i.
3) Secure B2A: S0 and S1 run to get the arithmetic-shared

NOT MSB 〈ā`〉A ← B2A(Jā`K).
4) Secure multiplication: S0 and S1 set 〈z〉A = 〈ā`〉A ·〈x〉A.

4.5 Secure Max Pooling Layer

The max pooling layer is used to down sample the features
by choosing the maximum values within a certain sliding
window. It is typically applied after the ReLU function. The
secure max pooling layer (SMP) function in Sonicsecurely
realizes the max(x1, ..., xn) functionality over secret shares.
In particular, we transform the pairwise maximum opera-

tion into the secure comparison with MSB extraction based
on Eq. 8 and a secure linear branching based on Eq. 9 via

b = MSB(a1 − a2) =

{
0 if a1 ≥ a2

1 if a1 < a2
; (8)

max(a1, a2) = (1− b) · a1 + b · a2. (9)

With above insights in mind, we provide the details of
the SMP realization. Given the secure MSB(·) gadget and

5 5

0 7

2 3 0 2

-1 5 -8 5

-1 -6 7 4

-2 -3 1 6

One feature matrix outputted 
from the linear layer.

2 3 0 2

0 5 0 5

0 0 7 4

0 0 1 6

ReLU

Activations outputted 
from ReLU.

2×2 pooling window

maxpool
2 3 0 2

-1 5 -8 5

-1 -6 7 4

-2 -3 1 6

2×2 pooling window

5 5

-1 7

ReLU 5 5

0 7

One feature matrix outputted 
from the linear layer.

ReLU-maxpool result.

maxpool-ReLU result.Max pooled features.

Original 
ReLU-maxpool

Our optimized 
maxpool-ReLU

maxpool

Fig. 9. An illustration of the optimized execution of ReLU and max
pooling layer with typical 2× 2 pooling window.

secure B2A(·) gadget, and the secret shares of input fea-
tures within each max pooling window 〈x1〉A, ..., 〈xn〉A, the
SMP(〈x1〉A, ..., 〈xn〉A) performs as follows:
1) For k ∈ [1, n− 1]:
2) Si sets 〈a1〉Ai = 〈xk〉Ai , 〈a2〉Ai = 〈xk+1〉Ai .
3) Secure comparison: S0 and S1 run to get the comparison

bit JbK← MSB(〈a1〉A − 〈a2〉A).
4) Secure B2A: S0 and S1 run to get 〈b〉A ← B2A(JbK).
5) Secure branching: S0 and S1 set 〈z〉A = (i − 〈b〉A) ·
〈a1〉A + 〈b〉A · 〈a2〉A. Si sets 〈xk+1〉Ai = 〈z〉Ai .

4.5.1 Optimized Execution of ReLU and Max Pooling
We observe that reversing the execution order of ReLU and
max pooling, i.e., maxpool(ReLU(·)) → ReLU(maxpool(·))
can greatly reduce the considerable workload to perform
ReLU (75% saving on ReLU operations for a 2 × 2 max
pooling window) [44]. This transformation is defined as

max(max(x1, 0), ...,max(xn, 0))
transform−−−−−→ max(max(x1, ..., xn), 0),

where x1, ...xn are the input features within the n-width
pooling window. Such a conversion will reduce the num-
ber of secure comparison operations in the secret sharing
domain and can significantly save the overall workloads.
Because computing the non-polynomial ReLU over secret
shares is knowingly complicated, the involved multiple
interactions could lead to long processing latency.

Consider a typical max pooling layer with 2× 2 pooling
window. In principle, a max pooling layer is applied directly
after the ReLU layer, where the 4 inputs within the 2 × 2
pooling window are the outputs of 4 ReLU operations.
Then, it performs a series of comparisons as follows:

maxpool(ReLU(x1),ReLU(x2),ReLU(x3),ReLU(x4))
(10)

= max(max(x1, 0),max(x2, 0),max(x3, 0),max(x4, 0)).

Since ReLU is monotonic (i.e., if x1 > x2,ReLU(x1) >=
ReLU(x2)), the Eq. 10 is identical to

max(max(x1, x2, x3, x4), 0) (11)
= ReLU(maxpool(x1, x2, x3, x4), 0),
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TABLE 2
Communication Complexity Analysis of Secure Non-linear Layers

Secure Function Benchmarks Communication Round Complexity

Secure MSB
RCA 12`− 16 O(`)
Sonic 12`− 16 O(log `)

Secure B2A Sonic 4` O(1)
Secure branching Sonic 8` O(1)

SReLU
GC [45], [46] 30`κ O(1)

RCA 20`− 16 `+ 2
Sonic 20`− 16 log `+ 2

SMP
GC [45], [46] (n+ 7)3`κ O(1)

RCA (n− 1)(24`− 16) (n− 1)(`+ 2)
Sonic (n− 1)(24`− 16) (n− 1)(log `+ 2)

where the internal maximum operation max(x1, x2, x3, x4)
is regarded as the max pooling layer and the out-layer maxi-
mum operation max(·, 0) is deemed as the ReLU activation.
Through such a transformation, 75% of ReLU operations are
saved given a typical max pooling with 2 × 2 window. A
concrete illustration is given in Fig. 9

4.6 Complexity Analysis

We now provide an analysis of the complexity of Sonic’s
secure layer functions and secure gadgets regarding the
number of communication rounds and the communication
overhead. Table 2 summarizes the theoretical communica-
tion costs of non-linear layer functions (SReLU and SMP)
and corresponding secure gadgets (secure MSB, secure B2A,
and secure branching). We set the benchmark as the RCA
based realization [16] for secure MSB. For SReLU and SMP,
we set the benchmarks as the realizations based on RCA and
GC [45], [46]. As defined, the bit length of an additive secret
share is `, and the max pooling window size is n (e.g., n = 4
if the pooling window is 2 × 2). Sonic’s PPA based secure
MSB gadget requires the communication as follows:

4`+ (
`

2
− 1) · 8 +

`

22
· 8 + ...+

`

2log `
· 8

=4`− 8 + 8` · (1

2
+

1

22
+ ...+

1

2log `
)

=12`− 16

For the GC benchmarks, the communication costs are sum-
marized based on the ReLU and max pooling circuits shown
in prior work [45], [46] which consist of the secure con-
versions between additive shares to Yao’s shares and corre-
sponding ReLU and max pooling functionalities. Note that
the GC protocols have constant round complexity O(1) as
the concrete number of communication rounds depending
on the specific realizations. As shown, our PPA based secure
MSB, SReLU, and SMP have logarithmic round trip costs to
the RCA based realizations with the same communication
costs. Meanwhile, our SReLU and SMP substantially save
the communication than the GC based realizations.

We also analyze the communication complexity of secure
linear layers (SCONV, SFC and SBN) and corresponding se-
cure gadget (SVDP) in Table 3. Suppose a typical stride is 1.
Suppose the number of padding p, the sizes of input tensor,
kernel, and output tensor of secure convolutional layer are
cin × nin × nin, cin × cout × n × n, and cout × nout × nout
respectively; and the sizes of input vector and output vector
of the fully-connected layer are cin, cout, respectively.

TABLE 3
Communication Complexity Analysis of Secure Linear Layers

Secure Function SVDP SCONV SFC SBN

Comm. 4`n cincout(nin − n+ p+ 1)24`n cincout4`n 4`

# of Rounds n cout(nin − n+ p+ 1)2n coutn 1

5 SECURITY ANALYSIS

Sonic properly encrypts the user input, the CNN model
(i.e., the weights), and any intermediate results as secret
shares based on the standard secret sharing techniques [14],
[47]. During Sonic’s execution, the two non-colluding cloud
servers receive only their corresponding secret shares that
are uniformly distributed randomnesses and reveals noth-
ing about private data. Each cloud proceeds Sonic’s secure
layer functions on its local shares independently. Any in-
teractions between the two cloud servers are supported by
the standard Beaver’s triples [15] that can offer provably
security guarantees on the exchanged secret shares.

Formally, we define an ideal functionality FONI for se-
curely proceeding an outsourced neural network inference
protocol targeted in this paper. On top of this ideal function-
ality, we formally present the security definition and prove
that Sonic’s protocol Π securely realizes this functionality
in the ideal/real world simulation paradigm. We consider
an adversary A to be semi-honest and can statically com-
promise the model owner, the mobile user, or anyone of the
two cloud servers S0, S1 independently and so to capture
the non-colluding property. In the ideal world, parties di-
rectly input and interact with the trusted functionality FONI

which executes the entire inference computation faithfully
on behalf of the parties. In the real world, parties directly
interact with Sonic’s protocol Π in the presence of above
adversary A. We say that protocol Π securely realizes FONI

if for every adversary A from the real world execution of Π,
there exists a probabilistic polynomial time (PPT) simulator
S in the ideal world forging A’s view such that A cannot
distinguish the two scenarios.

We start with modeling the ideal functionality FONI.

Definition 1. The ideal functionality FONI of secure neural
network inference outsourced to the cloud is modeled as
follows:

- Input. The model owner O deploys the pre-trained CNN
model W to FONI. The mobile user U submits the user
input X toFONI. The two servers S0 and S1 inputs nothing
to FONI.

- Computation. Upon receiving the model W from the
model owner and the user input X from the mobile user,
FONI interacts in hybrid with the ideal functionalities of
subroutines (i.e., layer-protocols) FSCONV, FSBN, FSReLU,
and FSMP to generate the prediction z.

- Output. The FONI outputs the prediction z to the mobile
user and nothing to the model owner.

We define the security guarantees.

Definition 2. Protocol Π is said to securely evaluate the func-
tionality FONI in the presence of semi-honest adversaries
in a static corruption, if for every PPT adversary A for
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the real model, there exits a PPT simulator S for the ideal
model, such that for every party P ⊂ [O,U , S0, S1]

{IDEALFONI,P,S(X̄)(X,W)}X,W,X̄
c≡ {REALΠ,P,A(X̄)(X,W)}X,W,X̄ .

where IDEALFONI,P,S(X̄)(X,W) is the output of joint ex-
ecution of FONI in the ideal world, REALΠ,P,S(X̄)(X,W)
is the output of and X̄ denotes the auxiliary input. We
consider the following cases:

- Corrupted model owner. A corrupted model owner is
required to learn no private information about the values
of user input X. In this case, there should have a simulator
S that interacts with O and extracts the model inputted
fromA to honest parties S0, S1.O cannot distinguish from
the transcripts whether interacting with S from the ideal
execution of FONI or from the real execution of Π.

- Corrupted mobile user. A corrupted mobile user is re-
quired to learn no private information about the values
of model weights and coefficients W beyond the hyper-
parameters made public available. In this case, there
should have a simulator S that interacts with U , extracts
the user input X inputted from U to honest parties S0, S1,
and emulates the output z. The corrupted mobile user U
cannot distinguish from the transcripts whether interact-
ing with S from the ideal execution of FONI or from the
real execution of Π.

- Corrupted cloud server. A corrupted cloud server Si ∈
[S0, S1] is required to learn no private information about
the values of user input X, model weights and coeffi-
cients W beyond the hyper-parameters. In this case, there
should has a simulator S that interacts with the corrupted
Si and emulates the exact transcripts for interactions
between the adversary Si and honest parties O,U , S1−i.
The corrupted cloud server Si cannot distinguish from
the transcripts whether interacting with S from the ideal
execution of FONI or from the real execution of Π.

Theorem 1. Sonic’s protocol Π securely realizes FONI (per
Definition 2) in the presence of one semi-honest ad-
versary A in the (FSCONV, FSBN, FSReLU, FSMP)-hybrid
model.

Proof 1. We begin by defining the simulator S based on
the corrupted party. The simulator should be able to
emulate the transcripts (including the joint distribution
of the inputs and outputs) that are computationally
indistinguishable from the ones in ideal world execu-
tion. That is, the transcripts during real interaction are
exactly simulated and the honest parties should learn the
correct outputs. In the hybrid argument, the executions
of the subroutines (layer-protocols) are simulated by S
which plays the roles of honest parties in corresponding
ideal functionalities. We construct S for the following
corruption parties:

- Simulator for the corrupted model owner. The only
work where the corrupted model owner O engaged in
protocol Π is inputting the secret-shared NN model W.
The simulator S plays the role of the corrupted model
ownerO in the ideal world by submitting the model W of
O to the ideal functionality FONI. The remaining protocol
Π runs by the honest two cloud servers by sequentially

TABLE 4
Time and Bandwidth of Atomic Layer Functions

SCONV SBN SReLU SMP
3× 3 5× 5 2× 2

Time (ms) 5.04 7.07 15.35 22.3 43.1
Comm. (KB) 0.14 0.39 0.016 0.076 0.275

composing the ideal functionalities of subroutines. At the
end of Π, only the shares of correct result z is returned
to the honest mobile user U so to achieve the correctness,
and nothing is outputted to O. To emulate the view of O,
the simulator S simply outputs the model W in a dummy
way. The S’s output (i.e., S(W)) is identically distributed
to the view of O (i.e., ViewΠ

U (W)), and thus the real and
ideal worlds are indistinguishable.

- Simulator for the corrupted mobile user. The corrupted
mobile user U engages in protocol Π by submitting the
secret shares of user input X, and receives the two shares
〈z〉0, 〈z〉1 of inference result z. The simulator S plays the
role of the corrupted mobile user U in the ideal world by
submitting the user input X to FONI. Upon receiving the
inference result z from FONI, S generates a random value
as 〈z∗〉0 ∈R Z2` and computes 〈z∗〉1 = z − 〈z∗〉0. Then
S outputs 〈z∗〉0, 〈z∗〉1. The security follows from the fact
that the additive secret shares 〈z∗〉0, 〈z∗〉1 are uniformly
random values in Z2` , and are identically distributed to
the transcripts from real world. Meanwhile, the result
z can be reconstructed via 〈z∗〉0 + 〈z∗〉1 (mod 2`). The
output S(X, z) and the view of U (i.e., ViewΠ

U (X, z)) are
identically distributed, and thus the two worlds are thus
indistinguishable.

- Simulator for a corrupted cloud server. The two cloud
servers S0 and S1 jointly proceed protocol Π in a symmet-
ric way without submitting any inputs and receiving the
final result. That is, they compute and interact with each
other over all secret shares in different layers of Π. Given
their symmetry, it is sufficient to construct a simulator S
for one of the server, say S0. In the subsequent protocol,
S sequentially composes the simulators of subroutines,
which play the role of honest cloud server S1 to interact
with S0. All messages involved in the subroutines are ran-
dom shares of matrices with the dimensions are consistent
to the honest server’s shares. The interactions between
two servers are simulated by the simulator SBTri for the
functionality of Beaver’s multiplication FBTri, which in-
teracts with S0 over random shares. The security follows
from the fact that all transcripts are uniformly distributed
secret shares that can be emulated with random values
in Z2` , and the view of S0 in every interaction in Π is
indistinguishable from the view emulated by SBTri. Hence,
we argue that S in the hybrid model can emulate the view
of S0, and thus the two worlds are indistinguishable. The
above concludes the proof of Theorem 1.

6 PERFORMANCE EVALUATION

6.1 System Implementation
We implement a prototype of Sonic in Java. Evaluations are
executed on two servers, running CentOS 7 and equipped
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TABLE 5
Time and Bandwidth of the SFC Layer

Layer Size (n× n) 64 128 256 512 1024

Time (ms) 0.12 0.19 0.234 0.35 0.65
Comm. (MB) 0.16 0.42 1.24 4.46 17.33
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Fig. 10. Time and bandwidth comparison of the SReLU and SMP layers.

with Intel Xeon Gold 6150 CPU @2.7GHz processor, 192GB
RAM, Mellanox Spectrum network. The reported measure-
ments use the MNIST and CIFAR-10 machine learning
benchmarking datasets with four CNNs, where M1, M2
are trained on MNIST and C1, C2 are trained on CIFAR-
10. We refer the readers to Sec. 6.6 for the details of the
model architectures. Consistent with prior art [11], [24], we
evaluate the benchmarks in the LAN setting.

Sonic’s secure NN inference works in the secret shar-
ing domain, where all data are represented in fixed-point
integers and shared over ring Z2` . In essence, we set the
ring size as Z232 . This setting of ring is consistent with
prior work [13]. To present the weights to 32-bit fixed-point
integers, we set the scaling factor q as 1024, 128, 64, and 128
for M1, M2, C1, and C2, respectively. Our implementation
can further seamlessly support the 64-bit ring Z264 . This
choice of ring size enables us to losslessly embed deeper
and more complex NNs, like the C1 and C2 for CIFAR-10.
We vary the ring size of C1 and C2 to Z264 with the factors
65536 and 131070, and report the experiment results.

We implement the training procedure based on PyTorch
backend and train the models over plaintext datasets on
NVIDIA Tesla V100 GPU. All four networks are trained with
standard SGD optimizer is adapted with cosine learning
rate decay, and we set the training parameters as the initial
learning rate 0.1, batch size 256, momentum 0.9, and the
weight decay 5×10−4 for every 50 epochs. For both MNIST
and CIFAR-10, all images are scaled to integers in [0, 255].
In this way, all user input images can be directly supplied
to Sonic’s secure inference without data preprocessing.

6.2 Microbenchmarks
Secure layer functions. We benchmark the performance
of secure layer functions, i.e., the building blocks used
for Sonic’s secure inference. Table 4 summarizes the time
and bandwidth consumptions of each layer function. For
demonstration, we choose the commonly-used kernel sizes
3 × 3 and 5 × 5 for the SCONV layer, and 2 × 2 pooling
window for the SMP layer. As shown, all functions can
be accomplished within 50ms and require less than 0.5KB
bandwidth regardless the window size. Table 5 depicts the
performance of the SFC layer over a series of n × n layers,
i.e., both input and output layers are with n neurons. With
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the growth of n, the time increases linearly attributed to our
batch processing, and the bandwidth ascends quadratically.
ReLU and MaxPool comparison with GC. Fig. 10 demon-
strates the performance improvements for Sonic’s SReLU
and SMP functions over a baseline realized based on GC.
The GC baseline realizes equivalent functionalities to Sonic,
is implemented on FlexSC with the free-XOR and half-AND
optimizations. Compared with the GC baseline, Sonic re-
quires 30× lower latency and 356× less communication for
the SReLU function. Besides, Sonic saves 16× latency and
160× communication cost for the SMP function. The re-
ported results show that our proposed secret sharing based
designs are more lightweight and applicable for practical
requirements, compared with the prior constructions relying
on GC [12], [19], [20], [24].

6.3 Sonic’s Protocol
Evaluation over ring Z232 . We evaluate Sonic’s secure
NN inference protocol on four models over machine learn-
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TABLE 6
Performance Summary of the Benchmarking Models with 32-bit Implementation

Dataset Model Cloud Cloud Mobile User a Model Owner b Layers
Time (s) Comm. (MB) Time (ms) Time (s)

MNIST M1 0.7 1.8 0.5 0.02 3SFC+ SBN+ SBA
M2 13.6 10.8 0.7 0.11 4SCONV/SFC+ SBN+ SBA, 2SMP

CIFAR-10 C1 161.2 711.4 2.5 5.9 8SCONV/SFC+ SBN+ SBA, 2SMP
C2 94.7 186.9 2.4 1.6 10SCONV/SFC+ SBN+ SBA, 3SMP

a Cost of generating shares of an image during preprocessing.
b One-time cost of generating shares of the model during preprocessing.
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Fig. 14. Performance breakdown of C2. Left: time; Right: bandwidth.

TABLE 7
Performance Summary of the 64-bit Implementation of Models on

CIFAR-10

Model Cloud Cloud Mobile User a Model Owner b

Time (s) Comm. (MB) Time (ms) Time (s)

C1 227.0 1239.5 9.0 14.06
C2 123.1 373.7 9.6 5.86

a Cost of generating shares of an image during preprocessing.
b One-time cost of generating shares of the model.

ing benchmarking datasets MNIST and CIFAT-10. Table 6
summarizes Sonic’s overall performance running at the
cloud. The models M1 with 3(FC-BN-ReLU) and M2 with
4(CONV/FC-BN-ReLU)-2MP for MNIST dataset are rela-
tively simple. Sonic performs high-quality predictions (97%
for M1, 99% for M2) with 0.7s and 13.6s online processing
time. The models C1 and C2 are trained for CIFAR-10. C1
uses the MiniONN architecture [11] with 8(CONV/FC-BN-
ReLU)-2MP, which is commonly evaluated in prior secure
NN inference works. C2’s architecture is in line with the Fit-
Net [48] with 10(CONV/FC-BN-ReLU)-3MP. For the more
complex C1 and C2, Sonic’s predictions require 2.68min
and 1.58min respectively. The workloads on the mobile user
(within 2.5ms) and model owner (within 6s) are light, which
confirms that Sonic is suitable for end-users with resource
constrained devices. Note that the workload of the model

TABLE 8
Summary of Inference Accuracy

MNIST CIFAR-10

Model Sonic Plaintext Model Sonic
32-bit

Sonic
64-bit Plaintext

M1 97.0% 97.0% C1 75.0% 84.0% 80.9%
M2 99.12% 99.12% C2 80.0% 88.0% 81%

TABLE 9
Bandwidth Comparison of Sonic with Prior Art on MNIST

Model Prior Art Bandwidth (MB)

M1

MiniONN [11] 15.8
Chameleon [17] 10.5

EzPC [49] 70
Gazelle (square approx.) [12] 0.5
XONN (trimmed BNN) [24] 4.29

Sonic (our design) 1.8

M2

MiniONN [11] 657.5
EzPC [49] 501

Gazelle (ReLU) [12] 70
XONN (trimmed BNN) [24] 32.13

Sonic (our design) 10.8

owner is one-time cost and determined by the NN’s size.
We further report the performance breakdown of each

network to have a more comprehensive understanding of
resource consumptions. As shown in Fig. 11, Fig. 12, Fig. 13
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TABLE 10
Bandwidth Comparison of Sonic’s 32-bit and 64-bit Implementations

with Prior Art on CIFAR10

Model Prior Art Bandwidth (MB)

C1

MiniONN [11] 9272
Chameleon [17] 2650

EzPC [49] 40683
Gazelle (square approx.) [12] 1236

Gazelle (ReLU) [12] ∼5000
XONN-1 [24] 1290
XONN-2 [24] 5099

Sonic (32-bit ring) 711
Sonic (64-bit ring) 1239.5

C2

XONN-1 [24] 2599
XONN-2 [24] 3461

Sonic (32-bit ring) 186.9
Sonic (64-bit ring) 373.7

and Fig. 14, the time (left/top figures) and bandwidth
(right/bottom figures) costs for each stage in M1 (8 stages)
and M2 (10 stages) on MNIST dataset, C1 (32 stages) and C2
(25 stages) on CIFAR10 dataset, respectively. As seen, the
linear layers occupy most of network resources, and non-
polynomial functions usually require more computation.
Evaluation over ring Z264 . As above mentioned, Sonic pro-
vides a 64-bit implementation to support complex and deep
networks. We evaluate Sonic with such a choice of ring
size on CIFAR-10 and benchmark the results in Table 7.
For the models C1 and C2, Sonic performs the secure
inference with 3.7min and 2.05min computational time, and
using 1239MB and 373MB bandwidth costs, respectively.
The workloads of the mobile user (within 10ms) and the
model owner (within 15s) are lightweight. We note that en-
larging the ring size increases their costs. This is because that
our prototype is implemented in Java, the 64-bit numbers
exceed the primitive data type (i.e., long), and the modular
operations need to work over costly BigInteger data type.

6.4 Summary of Accuracy
We report the Sonic’s prediction accuracy by varying the
ring sizes and compare the results with corresponding
plaintext predictions in Table 8. As shown, Sonic’s secure
inference of the M1 and M2 models on MNIST achieves
the same accuracy with plaintext predictions, i.e., 97%
and 99% accurate predictions, respectively. For CIFAR-10,
Sonic varies the ring sizes. For the C1 and C2 over 32-
bit ring, Sonic produces 75% and 80% accurate inference
results, a slight and reasonable lower than the plaintext
predictions accuracy 80.9% and 81%. For the C1 and C2
over 64-bit ring, Sonic’s inference achieves high-quality
results with 84% and 88% accuracy. Such results are more
accurate than corresponding plaintext predictions, as the
quantization of model weights prevent the overfitting of
models. We are aware a tension between the efficiency
and utility, i.e., the 64-bit implementation produces more
accurate predictions than the 32-bit one yet trading with
additional computational and bandwidth overheads.

6.5 Comparison with Prior Art
To demonstrate Sonic practical and lightweight, we com-
pare Sonic’s bandwidth with notable prior secure NN in-
ference systems. All measurements are reported from their

TABLE 11
Time Comparison of Sonic with Prior Art on CNNs over MNIST

Model Prior Art Time (s) Implementation, Deployment

M1

SecureML [19] 4.88 C++, outsourced
MiniONN [11] 1.04 C++, interactive
Chameleon [17] 2.24 C++, 3PC

EzPC [49] 0.7 C++, outsourced
Sonic (our design) 0.7 Java, outsourced

M2

CryptoNets [38] 297.5 C++, interactive
MiniONN [11] 9.32 C++, interactive

EzPC [49] 5.1 C++, outsourced
Gazelle (ReLU) [12] 1.37 C++, interactive
Sonic (our design) 13.6 Java, outsourced

TABLE 12
Time Comparison of Sonic with Prior Art on CNNs over CIFAR-10

Prior Art Time (s) Implementation, Deployment

MiniONN [11] 544 C++, interactive
Chameleon [17] 52.67 C++, 3PC

EzPC [49] 265.6 C++, outsourced
Gazelle (ReLU) [12] 140 C++, interactive
Sonic (our design) 94.7 Java, outsourced

papers, and the cost of Gazelle with all-ReLU activations
is given in Delphi. Table 9 and Table 10 summarize the
bandwidth costs on MNIST and CIFAR10 corresponding to
each model. For MNIST, Sonic achieves up to 38× and 60×
bandwidth savings over M1 and M2 compared with prior
art except for Gazelle with the square activation. However,
as aforementioned, Gazelle’s client-server protocol aggra-
vates the workload on client, including the homomorphic
computation and interactions with the model owner.

Table 10 compares Sonic’s bandwidth costs over 32-bit
and 64-bit rings with prior art on CIFAR-10. For XONN, it
applies NN trimming and scaling techniques, which result
in different accuracy and bandwidth for the same model,
depending on the portion of neurons pruned off and the
scaling factor. For C1, XONN-1 requires 1290MB band-
width with 72% accuracy and XONN-2 requires 5099MB
bandwidth with 80% accuracy. Sonic’s 32-bit and 64-bit
implementations achieve 75%, 84% accurate predictions
with 711MB, 1239.5MB bandwidth, amounting to 1.8×, 4.1×
lower costs and higher accuracy than XONN-1 and XONN-
2, respectively. Compared with other works, Sonic’s 32-bit
implementation requires the least bandwidth. Sonic’s 64-
bit implementation achieves 7.5×, 2×, 32.8×, 4× bandwidth
savings compared with MiniONN, Chameleon, EzPC, and
Gazelle with all-ReLU activations, respectively.

For the model C2, XONN-1 consumes 2599MB band-
width with 81% accuracy and XONN-2 consumes 3461MB
bandwidth with 84% accuracy. Our 32-bit and 64-bit im-
plementations cost 186.9MB, 373.7MB bandwidth with 75%,
84% accurate predictions, resulting in 13.9×, 9.3× savings
and higher quality compared with XONN-1 and XONN-
2. We note that Delphi [13] introduces an optimization
on network architecture to improve the performance while
preserving satisfactory accuracy. It trains a series of models
with different architectures by replacing different portion
of ReLU activations with quadratic polynomial approxima-
tions with tuned coefficients. However, this optimization



12

has uncertainty in practice, as such process requires extra
training costs which could be time-consuming [50].

Table 11 and Table 12 summarize the computational
costs on the CNNs over MNIST and CIFAR-10 datasets. As
shown, for the model M1, Sonic achieves 6.9×, 1.48×, 3.2×
speedup over SecureML, MiniONN, Chameleon, respec-
tively, and the time cost of Sonic is comparable to EzPC.
For the model M2, Sonic is 21.8× and 1.1× faster than
CryptoNets and EzPC, and the time cost of Sonic is com-
parable to MiniONN. For CIFAR-10, Sonic demonstrates
5.7×, 2.8×, 1.4× faster secure inference than the MiniONN,
EzPC, and Gazelle, respectively. We are aware that some
of prior works achieves better inference time than Sonic.
However, we emphasize that the time comparison is not
a fair comparison due to the following two-fold reasons.
From the implementation perspective, most prior works
are implemented in C++ whereas Sonic is implemented
in Java. It is known that the computational performance of
C++ programs are a few orders of magnitudes better than
Java programs. For example, Gazelle is implemented in C++
with SIDM optimization and is running on more powerful
computers with faster CPU than Sonic. Moreover, some of
the prior systems consider the client-server deployment sce-
nario, where the private model weights and the client input
are hidden from the counterparty. The secure protocols of
these systems do not need to work over encrypted model
and the encrypted input at the same time. In comparison,
the secure outsourced inference systems (including Sonic,
SecureML) require to ensure the security of the model and
the client input simultaneously, i.e., the secure protocols
are executed over both encrypted model weights and the
encrypted client input. Some other works require multiple
servers that increase the deployment overhead than the two-
server model. For example, the offline phase in Chameleon
is designed under the three-server setting.

6.6 Model Architectures
This section presents the details of model architectures used
in our evaluation. For MNIST, the model M1 (summarized
in Table 13) is comprised of 3 fully-connected (FC) layers,
each of the FC layer is followed by the batch normalization
(BN) and ReLU. It has been used in prior works [11], [12],
[17], [19], [24], [49]. The model M2 (reported in Table 14) has
been used in prior works [11], [12], [24], [49], which consists
of 3 convolutional layers followed by BN and ReLU, 2 max
pooling (MP) layers and 1 FC. For CIFAR-10, we use two
more complex models C1 and C2. The model C1 (reported
in Table 15) has been used in prior works [11], [12], [17], [24]
for a benchmarking evaluation, which consists of 7 CONV
layers followed by BN and ReLU, 2 MP layers and 1 FC
layer. The model C2 (reported in Table 16) is a variant of
FitNets (a thin deep network) and has been adopted in
the XONN [24] with its trimmed binarized version, which
consists of 9 CONV layers followed by BN and ReLU, 3 MP
layers and 1 FC layer.

7 RELATED WORKS

7.1 Secure Neural Network Inference
Secure neural network inference has received increasing
attention in recent years. Most of prior works [11], [12],

TABLE 13
Model Architecture of M1

Layer # SVDP Padding,
Stride

FC (784→ 128) - BN - ReLU 128 NA, NA
FC (128→ 128) - BN - ReLU 128 NA, NA
FC (128→ 10) - BN 10 NA, NA

TABLE 14
Model Architecture of M2

Layer #
SVDP

Padding,
Stride

CONV (input: R1×28×28, kernel: R1×16×5×5 →
R16×24×24) - BN - ReLU

1×9216 NA, 1

MP (input: R16×24×24, window: R16×2×2 →
R16×12×12)

NA NA, 2

CONV (input: R16×12×12, kernel: R16×16×5×5 →
R16×8×8) - BN - ReLU

16×1024 NA, 1

MP (input: R16×8×8, window: R16×2×2 →
R16×4×4) - BN - ReLU

NA NA, 2

FC (256→ 100) - BN - ReLU 100 NA, NA
FC (100→ 10) - BN 10 NA, NA

TABLE 15
Model Architecture of C1

Layer # SVDP Padding,
Stride

CONV (input: R3×32×32, kernel: R3×64×3×3 →
R64×30×30) - BN - ReLU

3×57600 NA, 1

CONV (input: R64×30×30, kernel: R64×64×3×3

→ R64×28×28) - BN - ReLU
64×50176 NA, 1

MP (input: R64×28×28, window: R64×2×2 →
R64×14×14)

NA NA, 2

CONV (input: R64×14×14, kernel: R64×64×3×3,
feature: R64×12×12) - BN - ReLU

64×9216 NA, 1

CONV (input: R64×12×12, kernel: R64×64×3×3

→ R64×10×10) - BN - ReLU
64×6400 NA, 1

MP (input: R64×10×10, window: R64×2×2 →
R64×5×5)

NA NA, 2

CONV (input: R64×5×5, kernel: R64×64×3×3 →
R64×3×3) - BN - ReLU

64×576 NA, 1

CONV (input: R64×3×3, kernel: R64×64×3×3 →
R64×3×3) - BN - ReLU

64×576 0, 1

CONV (input: R64×3×3, kernel: R16×64×3×3 →
R16×3×3) - BN - ReLU

64×144 0, 1

FC (144→ 10) - BN 10 NA, NA

[13], [24], [38], [39], [41], [51] consider a scenario where
the user directly interacts with the model owner, through
cryptographic protocols to obtain the inference result. These
protocols ensure that the private model parameters cannot
be learned by the client and the private user input cannot
be exposed to the server. These works require the user and
the model owner to be actively online for synchronous
interactions, and to have symmetric computing capabili-
ties, which are hard to be satisfied in practice especially
for mobile user clients. Furthermore, most of these works
involve heavy cryptographic techniques such homomorphic
encryption and/or garbled circuits in the online execution
of the cryptographic protocols. When deployed for mobile
users, they will result in significant performance overheads.

Some other works [19], [20], [52] leverage the two-server
model to carry out the computation of secure inference
through tailored protocols, freeing the model owner and
the client from active online participation. These secure
inference protocols outsourced to the two servers, compared
to the above mentioned interactive protocol, require to
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TABLE 16
Model Architecture of C2

Layer # SVDP Padding,
Stride

CONV (input: R3×32×32, kernel: R3×16×3×3 →
R16×32×32) - BN - ReLU

3×16384 0, 1

CONV (input: R16×32×32, kernel: R16×16×3×3

→ R16×32×32) - BN - ReLU
16×16384 0, 1

CONV (input: R16×32×32, kernel: R16×16×3×3

→ R16×32×32) - BN - ReLU
16×16384 0, 1

MP (input: R16×32×32, window: R16×2×2 →
R16×16×16)

- -, 2

CONV (input: R16×16×16, kernel: R16×32×3×3

→ R32×16×16) - BN - ReLU
16×8192 0, 1

CONV (input: R32×16×16, kernel: R32×32×3×3

→ R32×16×16) - BN - ReLU
16×8192 0, 1

CONV (input: R32×16×16, kernel: R32×32×3×3

→ R32×16×16) - BN - ReLU
16×8192 0, 1

MP (input: R32×16×16, window: R32×2×2 →
R32×8×8)

- NA, 2

CONV (input: R32×8×8, kernel: R32×48×3×3 →
R48×6×6) - BN - ReLU

32×1728 NA, 1

CONV (input: R48×6×6, kernel: R48×48×3×3 →
R48×4×4) - BN - ReLU

48×1728 NA, 1

CONV (input: R48×4×4, kernel: R48×64×3×3 →
R64×2×2) - BN - ReLU

48×2304 NA, 1

MP (input: R64×2×2, window: R64×2×2 →
R64×1×1)

NA NA, 2

FC (64→ 10) - BN 10 NA, NA

protect the NN model and the client input simultaneously.
However, these works still involve heavy cryptography dur-
ing the secure inference procedure among the two servers.
Specifically, they rely on expensive garbled circuit based ap-
proaches to support secure comparison as required in non-
polynomial functions of NNs, such as the ReLU function
and max pooling. Moreover, the works [20], [52] are de-
signed for special binarized/ternarized NNs (BNN/TNN)
with {0, 1}/{−1, 0, 1}weights, where their secure protocols
cannot support generic CNNs with real-valued weights and
more complicated layer functions. Sonic adopts a similar
two-server model, yet fully relies on the lightweight secret
sharing technique to build a customized protocol for effi-
cient secure NN inference services in the cloud.

There have been some works [17], [35], [53], [54], [55]
focusing on efficient secure inference with three or four
servers. These works usually introduce higher real-world
deployment complexity compared to the two-server model.
Among all prior works, we are aware that some systems
[35], [41], [55] also only uses secret sharing. However, their
protocols are specially designed under a more complex
three-server setting [35], [55] where three servers interact
with each other in the online inference procedure, or for a
non-outsourcing setting that requires continuous interactions
between the client and the model owner [41]. Table 17 gives
a high-level comparison of Sonic with prior works.

7.2 Privacy-Preserving Machine Learning in Cloud
computing
A rich body of work has explored privacy-preserving ma-
chine learning applications in cloud computing. Some of
these works ensure the privacy resorting to cryptographic
approaches (secure multiparty computation, homomorphic
encryption) for various outsourced ML applications, like
ridge regression and logistic regression [19], [56], decision
trees [16], federated learning [57], video classification via

CNNs [58]. A common rationale of these approaches is
to design specialized cryptographic protocols to meet the
certain needs of different applications. For example, PO-
SEIDON [57] employs multiparty lattice-based fully ho-
momorphic encryption for a quantum-resistant federated
learning. Some other works utilize differential privacy tech-
niques [27], [28], [29], [30] or rely on the trusted proces-
sors (e.g., SGX) [59], [60] for privacy preservation, such as
the oblivious video analytics as a cloud service [59] and
XGBoost learning [60]. Meanwhile, some other work [61]
focuses on an orthogonal aspect, i.e., verifying the integrity
of machine leaning computation, but it does not guarantee
the user data and model confidentiality.

7.3 Adversarial Machine Learning Attacks
There have been adversarial machine learning attacks [7],
[8], [25], [26] that attempt to infer private information about
the NN model and the training dataset via blackbox oracle
access to the inference procedure. One major class of those
attacks are the membership inference attacks [8], [26], where
an attacker aims to discover the presence of a particular
record in the training dataset via querying the NN models
in a black-box way1. Another class of attacks are the model
inversion attacks [7], [62], which can be abused to infer the
(hidden) sensitive attributes of the input data through the
API access to the model. Apart from the inference attacks,
there exist other attacks that try to steal specific information
about the NN models, such as the model stealing attack [25],
and hyperparameter stealing attack [63].

Defenses against those attacks are active research areas
complementary to secure NN inference that we target in this
paper. One mitigation approach is to limit the private infor-
mation memorized by the NN model. A common strategy is
to leverage differentially private learning [27], [28], [29], [30],
so as to bound the privacy impact regarding whether or not
a single data record is used to train the model. By injecting a
calibrated amount of random noise to the NN model during
training, the presence of a record in the training dataset
and the effect of sensitive attribute on the prediction can
be obfuscated [30]. Apart from using differential privacy
techniques, some other ML methods have been proposed
to reduce the private information given to the adversary
via modifying the network and/or prediction, such as
regularization [31], prediction API minimization [25], and
perturbing the activation function [32]. Another approach
is query auditing, where the feature space explored by
queries [33], or the distribution of a batch of queries [34]
is leveraged to detect adversarial ones. Indeed ensuring
the confidentiality of the model weights could increase the
overhead to successfully launch those attacks [34]. Such an
approach compels an attacker to send more queries, and as a
result, the adversarial queries are more likely to be detected.

8 CONCLUSION

In this paper, we present Sonic, an in-the-cloud lightweight
secure neural network inference service. Sonic relaxes the

1. Membership inference attacks via white-box access [62] are out of
the consideration as they requires auxiliary information (e.g., training
losses) about training process.
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TABLE 17
A high-level summary of different secure inference systems.

Heavy comp.
cost

Heavy comm.
cost1

Applicable for
general CNNs2

Interactive
2PC Protocol
(symmetric)

HE CryptoNets [38], CryptoDL [51]

XONN [24]

Mixed
MiniONN [11]
Gazelle [12]
Delphi [13]

SS MediSC [41]

Outsourced
2PC Protocol

Mixed

SecureML [19] -
Quotient [20] -
Leia [52]

SS Sonic (our system)

Using Multiple
Servers3

Mixed ABY3 [53], Trident [54]
Chameleon [17]

SS SecureNN [35], CryptFlow [55]
1 The communication cost is evaluated based on the results reported in prior works, and [19], [20] have not reported their inference
bandwidth costs.
2 Not fully support common CNN model architectures, which could downgrade inference accuracy.
3 Require three or more servers to assist the online inference procedure.

end-user and model owner from being engaged in online
secure inference procedure. Sonic is comprised of a series
of secure layer functions purely relying on lightweight
secret sharing techniques, each of which is highly cus-
tomized for an efficient secure inference service in the cloud.
Sonic provide strong guarantees on both user input and
CNN model privacy. Experiments on common benchmark
datasets demonstrates Sonic’s practical performance.
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